ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing IGM large-scale flows: warps in galaxies at shells of voids

36   0   0.0 ( 0 )
 نشر من قبل Martin Lopez-Corredoira
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

CONTEXT. Hydrodynamical cosmological simulations predict flows of the intergalactic medium along the radial vector of the voids, approximately in the direction of the infall of matter at the early stages of the galaxy formation. AIMS. These flows might be detected by analysing the dependence of the warp amplitude on the inclination of the galaxies at the shells of the voids with respect to the radial vector of the voids. This analysis will be the topic of this paper. METHODS. We develop a statistical method of analysing the correlation of the amplitude of the warp and the inclination of the galaxy at the void surface. This is applied to a sample of 97 edge-on galaxies from the Sloan Digital Sky Survey. Our results are compared with the theoretical expectations, which are also derived in this paper. RESULTS. Our results allow us to reject the null hypothesis (i.e., the non-correlation of the warp amplitude and the inclination of the galaxy with respect to the void surface) at 94.4% C. L., which is not conclusive. The absence of the radial flows cannot be excluded at present, although we can put a constraint on the maximum average density of baryonic matter of the radial flows of <rho_b> <~ 4 Omega_b rho_crit.

قيم البحث

اقرأ أيضاً

The expanding complex pattern of filaments, walls and voids build the evolving cosmic web with material flowing from underdense onto high density regions. Here we explore the dynamical behaviour of voids and galaxies in void shells relative to neighb oring overdense superstructures, using the Millenium Simulation and the main galaxy catalogue in Sloan Digital Sky Survey data. We define a correlation measure to estimate the tendency of voids to be located at a given distance from a superstructure. We find voids-in-clouds (S-types) preferentially located closer to superstructures than voids-in-voids (R-types) although we obtain that voids within $sim40~mathrm{Mpc},mathrm{h}^{-1}$ of superstructures are infalling in a similar fashion independently of void type. Galaxies residing in void shells show infall towards the closest superstructure, along with the void global motion, with a differential velocity component depending on their relative position in the shell with respect to the direction to the superstructure. This effect is produced by void expansion and therefore is stronger for R-types. We also find that galaxies in void shells facing the superstrucure flow towards the overdensities faster than galaxies elsewere at the same relative distance to the superstructure. The results obtained for the simulation are also reproduced for the SDSS data with a linearized velocity field implementation.
Wasserstein gradient flows provide a powerful means of understanding and solving many diffusion equations. Specifically, Fokker-Planck equations, which model the diffusion of probability measures, can be understood as gradient descent over entropy fu nctionals in Wasserstein space. This equivalence, introduced by Jordan, Kinderlehrer and Otto, inspired the so-called JKO scheme to approximate these diffusion processes via an implicit discretization of the gradient flow in Wasserstein space. Solving the optimization problem associated to each JKO step, however, presents serious computational challenges. We introduce a scalable method to approximate Wasserstein gradient flows, targeted to machine learning applications. Our approach relies on input-convex neural networks (ICNNs) to discretize the JKO steps, which can be optimized by stochastic gradient descent. Unlike previous work, our method does not require domain discretization or particle simulation. As a result, we can sample from the measure at each time step of the diffusion and compute its probability density. We demonstrate our algorithms performance by computing diffusions following the Fokker-Planck equation and apply it to unnormalized density sampling as well as nonlinear filtering.
282 - Michal Svanda 2008
In the recent papers, we introduced a method utilised to measure the flow field. The method is based on the tracking of supergranular structures. We did not precisely know, whether its results represent the flow field in the photosphere or in some su b-photospheric layers. In this paper, in combination with helioseismic data, we are able to estimate the depths in the solar convection envelope, where the detected large-scale flow field is well represented by the surface measurements. We got a clear answer to question what kind of structures we track in full-disc Dopplergrams. It seems that in the quiet Sun regions the supergranular structures are tracked, while in the regions with the magnetic field the structures of the magnetic field are dominant. This observation seems obvious, because the nature of Doppler structures is different in the magnetic regions and in the quiet Sun. We show that the large-scale flow detected by our method represents the motion of plasma in layers down to ~10 Mm. The supergranules may therefore be treated as the objects carried by the underlying large-scale velocity field.
Reconstruction of the local velocity field from the overdensity field and a gravitational acceleration that falls off from a point mass as r^-2 yields velocities in broad agreement with peculiar velocities measured with galaxy distance indicators. MO NDian gravity does not. To quantify this, we introduce the velocity angular correlation function as a diagnostic of peculiar velocity field alignment and coherence as a function of scale. It is independent of the bias parameter of structure formation in the standard model of cosmology and the acceleration parameter of MOND. A modified gravity acceleration consistent with observed large scale structure would need to asymptote to zero at large distances more like r^-2, than r^-1.
In this paper, we present results of a photometric and kinematic study for a sample of 13 edge-on spiral galaxies with pronounced integral-shape warps of their stellar discs. The global structure of the galaxies is analyzed on the basis of the Sloan Digital Sky Survey (SDSS) imaging, in the g, r and i passbands. Spectroscopic observations are obtained with the 6-m Special Astrophysical Observatory telescope. In general, galaxies of the sample are typical bright spiral galaxies satisfying the Tully-Fisher relation. Most of the galaxies reside in dense spatial environments and, therefore, tidal encounters are the most probable mechanism for generating their stellar warps. We carried out a detailed analysis of the galaxies and their warps and obtained the following main results: (i) maximum angles of stellar warps in our sample are about 20{deg}; (ii) warps start, on average, between 2 and 3 exponential scale lengths of a disc; (iii) stronger warps start closer to the center, weak warps start farther; (iv) warps are asymmetric, with the typical degree of asymmetry of about several degrees (warp angle); (v) massive dark halo is likely to preclude the formation of strong and asymmetric warps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا