ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Standard Neutrino Interactions with Matter from Physics Beyond the Standard Model

198   0   0.0 ( 0 )
 نشر من قبل Stefan Antusch
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate how non-standard neutrino interactions (NSIs) with matter can be generated by new physics beyond the Standard Model (SM) and analyse the constraints on the NSIs in these SM extensions. We focus on tree-level realisations of lepton number conserving dimension 6 and 8 operators which do not induce new interactions of four charged fermions (since these are already quite constrained) and discard the possibility of cancellations between diagrams with different messenger particles to circumvent experimental constraints. The cases studied include classes of dimension 8 operators which are often referred to as examples for ways to generate large NSIs with matter. We find that, in the considered scenarios, the NSIs with matter are considerably more constrained than often assumed in phenomenological studies, at least ${cal O}(10^{-2})$. The constraints on the flavour-conserving NSIs turn out to be even stronger than the ones for operators which also produce interactions of four charged fermions at the same level. Furthermore, we find that in all studied cases the generation of NSIs with matter also gives rise to NSIs at the source and/or detector of a possible future Neutrino Factory.



قيم البحث

اقرأ أيضاً

Non-standard neutrino interactions (NSI) involved in neutrino propagation inside Earth matter could potentially alter atmospheric neutrino fluxes. In this work, we look at the impact of these NSI on the signal at the ICAL detector to be built at the India-based Neutrino Observatory (INO). We show how the sensitivity to the neutrino mass hierarchy of ICAL changes in the presence of NSI. The mass hierarchy sensitivity is shown to be rather sensitive to the NSI parameters $epsilon_{emu}$ and $epsilon_{etau}$, while the dependence on $epsilon_{mutau}$ and $epsilon_{tautau}$ is seen to be very mild, once the $chi^2$ is marginalised over oscillation and NSI parameters. If the NSI are large enough, the event spectrum at ICAL is expected to be altered and this can be used to discover new physics. We calculate the lower limit on NSI parameters above which ICAL could discover NSI at a given C.L. from 10 years of data. If NSI were too small, the null signal at ICAL can constrain the NSI parameters. We give upper limits on the NSI parameters at any given C.L. that one is expected to put from 10 years of running of ICAL. Finally, we give C.L. contours in the NSI parameter space that is expected to be still allowed from 10 years of running of the experiment.
194 - O. G. Miranda , H. Nunokawa 2015
Neutrino oscillations have become well-known phenomenon; the measurements of neutrino mixing angles and mass squared differences are continuously improving. Future oscillation experiments will eventually determine the remaining unknown neutrino param eters, namely, the mass ordering, normal or inverted, and the CP-violating phase. On the other hand, the absolute mass scale of neutrinos could be probed by cosmological observations, single beta decay as well as by neutrinoless double beta decay experiments. Furthermore, the last one may shed light on the nature of neutrinos, Dirac or Majorana, by measuring the effective Majorana mass of neutrinos. However, the neutrino mass generation mechanism remains unknown. A well-motivated phenomenological approach to search for new physics, in the neutrino sector, is that of non-standard interactions. In this short review, the current constraints in this picture, as well as the perspectives from future experiments, are discussed.
We investigate non-standard neutrino interactions (NSIs) in the triplet seesaw model featuring non-trivial correlations between NSI parameters and neutrino masses and mixing parameters. We show that sizable NSIs can be generated as a consequence of a nearly degenerate neutrino mass spectrum. Thus, these NSIs could lead to quite significant signals of lepton flavor violating decays such as mu^- to e^- u_e anti u_mu and mu^+ to e^+ anti u_e u_mu at a future neutrino factory, effects adding to the uncertainty in determination of the Earth matter density profile, as well as characteristic patterns of the doubly charged Higgs decays observable at the Large Hadron Collider.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا