ترغب بنشر مسار تعليمي؟ اضغط هنا

Higgs sector of the next-to-minimal renormalizable SUSY SO(10)

105   0   0.0 ( 0 )
 نشر من قبل Michal Malinsky
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Michal Malinsky




اسأل ChatGPT حول البحث

We study the Higgs potential of the next-to-minimal renormalizable SUSY SO(10) GUT with 120 Higgs representation on top of the standard minimal model Higgs sector spanning over 10, 126bar+126 and 210. All the GUT-scale Higgs sector mass matrices for the 592 Higgs states of the model are written down in detail with all the conventions fully specified. The consistency of the results is checked by the decoupling of 120 and independently by the analysis of the relevant Goldstone modes. The matching of the Yukawa sector sum-rules driving the matter fermion masses and mixing at the level of the effective theory is described thoroughly.

قيم البحث

اقرأ أيضاً

108 - S.W. Ham 2001
The neutral Higgs sector of the next-to-minimal supersymmetric standard model (NMSSM) with explicit CP violation is investigated at the 1-loop level, using the effective potential method; not only the loops involving the third generation of quarks an d scalar quarks, but also the loops involving $W$ boson, charged Higgs boson, and chargino are taken into account. It is found that for some parameter values of the NMSSM the contributions from the $W$ boson, charged Higgs boson, and chargino loops may modify the masses of the neutral Higgs bosons and the mixings among them significantly, depending on the CP phase. In $e^+e^-$ collisions, the prospects for discovering neutral Higgs bosons are investigated within the context of the NMSSM with explicit CP violation when the dominant component of the lightest neutral Higgs boson is the Higgs singlet field of the NMSSM.
Supersymmetric $SO(10)$ grand unified models with renormalizable Yukawa couplings involving only ${bf 10}$ and $overline{bf 126}$ Higgs fields have been shown to realize the fermion masses and mixings economically. In previous works, the sum rule of the fermion mass matrices are given by inputting the quark matrices, and the neutrino mixings are predicted in this framework. Now the three neutrino mixings have been measured, and in this paper, we give the sum rule by inputting the lepton mass matrices, which makes clear certain features of the solution, especially if the vacuum expectation values of ${bf 126}+ overline{bf126}$ ($v_R$) are large and the right-handed neutrinos are heavy. We perform the $chi^2$ analyses to fit the fermion masses and mixings using the sum rule. In previous works, the best fit appears at $v_R sim 10^{13}$ GeV, and the fit at the large $v_R$ scale ($sim 10^{16}$ GeV) has been less investigated. Our expression of the sum rule has a benefit to understand the flavor structure in the large $v_R$ solution. Using the fit results, we perform the calculation of the $mu to egamma$ process and the electric dipole moment of electron, and the importance of $v_R$ dependence emerges in low energy phenomena. We also show the prediction of the CP phase in the neutrino oscillations, which can be tested in the near future.
In the context of a renormalizable supersymmetric SO(10) Grand Unified Theory, we consider the fermion mass matrices generated by the Yukawa couplings to a $mathbf{10} oplus mathbf{120} oplus bar{mathbf{126}}$ representation of scalars. We perform a complete investigation of the possibilities of imposing flavour symmetries in this scenario; the purpose is to reduce the number of Yukawa coupling constants in order to identify potentially predictive models. We have found that there are only 14 inequivalent cases of Yukawa coupling matrices, out of which 13 cases are generated by $Z_n$ symmetries, with suitable $n$, and one case is generated by a $Z_2 times Z_2$ symmetry. A numerical analysis of the 14 cases reveals that only two of them---dubbed A and B in the present paper---allow good fits to the experimentally known fermion masses and mixings.
Proton decay is one of the most important predictions of the grand unified theory (GUT). In the supersymmetric (SUSY) GUT, proton decays via the dimension-five operators need to be suppressed. In the $SO(10)$ model where ${bf 10}+overline{bf 126}$ Hi ggs fields couple to fermions, neutrino oscillation parameters including the CP-violating Pontecorvo-Maki-Nakagawa-Sakata (PMNS) phase can be related to the Yukawa couplings to generate the dimension-five operators in the unified framework. We show how the suppressed proton decay depends on the PMNS phase, and stress the importance of the precise measurements of the PMNS phase as well as the neutrino 23-mixing angle. These become especially important if the SUSY particles are found around less than a few TeV at LHC and proton decays are observed at Hyper-Kamiokande and DUNE experiments in the near future.
109 - Antonio Costantini 2016
We investigate the squark sector of a supersymmetric theory with an extended Higgs sector. We give the mass matrices of stop and sbottom, comparing the Minimal Supersymmetric Standard Model (MSSM) case and the non-minimal case. We discuss the impact of the extra superfields on the decay channels of the stop searched at the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا