ترغب بنشر مسار تعليمي؟ اضغط هنا

SuperLupus: A Deep, Long Duration Transit Survey

438   0   0.0 ( 0 )
 نشر من قبل Daniel Bayliss
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SuperLupus is a deep transit survey monitoring a Galactic Plane field in the Southern hemisphere. The project is building on the successful Lupus Survey, and will double the number of images of the field from 1700 to 3400, making it one of the longest duration deep transit surveys. The immediate motivation for this expansion is to search for longer period transiting planets (5-8 days) and smaller radii planets. It will also provide near complete recovery for the shorter period planets (1-3 days). In March, April, and May 2008 we obtained the new images and work is currently in progress reducing these new data.

قيم البحث

اقرأ أيضاً

Holczer, Mazeh, and collaborators (HM+16) used the Kepler four-year observations to derive a transit-timing catalog, identifying 260 Kepler objects of interest (KOI) with significant transit timing variations (TTV). For KOIs with high enough SNRs, HM +16 also derived the duration and depth of their transits. In the present work, we use the duration measurements of HM+16 to systematically study the duration changes of 561 KOIs and identify 15 KOIs with a significant long-term linear change of transit durations and another 16 KOIs with an intermediate significance. We show that the observed linear trend is probably caused by a precession of the orbital plane of the transiting planet, induced in most cases by another planet. The leading term of the precession rate depends on the mass and relative inclination of the perturber, and the period ratio between the two orbits, but not on the mass and period of the transiting planet itself. Interestingly, our findings indicate that, as a sample, the detected time derivatives of the durations get larger as a function of the planetary orbital period, probably because short-period planetary systems display small relative inclinations. The results might indicate that short-period planets reside in relatively flattened planetary systems, suggesting these systems experienced stronger dissipation either when formed or when migrated to short orbits. This should be used as a possible clue for the formation of such systems.
A planets orbital orientation relative to an observers line of sight determines the chord length for a transiting planet, i.e., the projected distance a transiting planet travels across the stellar disc. For a given circular orbit, the chord length d etermines the transit duration. Changes in the orbital inclination, the direction of the ascending node, or both, can alter this chord length and thus result in transit duration variations (TDVs). Variation of the full orbital inclination vector can even lead to de-transiting or newly transiting planets for a system. We use Laplace-Lagrange secular theory to estimate the fastest nodal eigenfrequencies for over 100 short-period planetary systems. The highest eigenfrequency is an indicator of which systems should show the strongest TDVs. We further explore five cases (TRAPPIST-1, Kepler-11, K2-138, Kepler-445, and Kepler-334) using direct N-body simulations to characterize possible TDVs and to explore whether de-transiting planets could be possible for these systems. A range of initial conditions are explored, with each realization being consistent with the observed transits. We find that tens of percent of multiplanet systems have fast enough eigenfrequencies to expect large TDVs on decade timescales. Among the directly integrated cases, we find that de-transiting planets could occur on decade timescales and TDVs of 10 minutes per decade should be common.
As the sensitivity and observing time of gravitational-wave detectors increase, a more diverse range of signals is expected to be observed from a variety of sources. Especially, long-lived gravitational-wave transients have received interest in the l ast decade. Because most of long-duration signals are poorly modeled, detection must rely on generic search algorithms, which make few or no assumption on the nature of the signal. However, the computational cost of those searches remains a limiting factor, which leads to sub-optimal sensitivity. Several detection algorithms have been developed to cope with this issue. In this paper, we present a new data analysis pipeline to search for un-modeled long-lived transient gravitational-wave signals with duration between 10 and 1000 s, based on an excess cross-power statistic in a network of detectors. The pipeline implements several new features that are intended to reduce computational cost and increase detection sensitivity for a wide range of signal morphologies. The method is generalized to a network of an arbitrary number of detectors and aims to provide a stable interface for further improvements. Comparisons with a previous implementation of a similar method on simulated and real gravitational-wave data show an overall increase in detection efficiency depending on the signal morphology, and a computing time reduced by at least a factor 10.
66 - David Montes 1998
We report the possible detection of a Li I 6708 AA line enhancement during an unusual long-duration optical flare in the recently discovered, X-ray/EUV selected, chromospherically active binary 2RE J0743+224. The Li I equivalent width (EW) variations follow the temporal evolution of the flare and large changes are observed in the intensity of the line. The maximum Li I enhancement occurs just after the maximum chromospheric emission observed in the flare. A significant increase of the 6Li/7Li isotopic ratio is also detected. No significant simultaneous variations are detected in other photospheric lines. Neither line blends nor starspots seem to be the primary cause of the observed Li I line variation. From all this we suggest that this Li I enhancement is produced by spallation reactions during the flare.
We present the results of the SuperLupus Survey for transiting hot Jupiter planets, which monitored a single Galactic disk field spanning 0.66 sq. deg for 108 nights over three years. Ten candidates were detected: one is a transiting planet, two rema in candidates, and seven have been subsequently identified as false positives. We construct a new image quality metric, S_j, based on the behaviour of 26,859 light curves, which allows us to discard poor images in an objective and quantitative manner. Furthermore, in some cases we are able to identify statistical false positives by analysing temporal correlations between S_j and transit signatures. We use Monte Carlo simulations to measure our detection efficiency by injecting artificial transits onto real light curves and applying identical selection criteria as used in our survey. We find at 90% confidence level that 0.10 (+0.27/-0.08)% of dwarf stars host a hot Jupiter with a period of 1-10 days. Our results are consistent with other transit surveys, but appear consistently lower than the hot Jupiter frequencies reported from radial velocity surveys, a difference we attribute, at least in part, to the difference in stellar populations probed. In light of our determination of the frequency of hot Jupiters in Galactic field stars, previous null results for transiting planets in open cluster and globular cluster surveys no longer appear anomalously low.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا