ترغب بنشر مسار تعليمي؟ اضغط هنا

Magneto-Thermohaline Mixing in Red Giants

121   0   0.0 ( 0 )
 نشر من قبل Pavel Denissenkov
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revise a magnetic buoyancy model that has recently been proposed as a mechanism for extra mixing in the radiative zones of low-mass red giants. The most important revision is our accounting of the heat exchange between rising magnetic flux rings and their surrounding medium. This increases the buoyant rising time by five orders of magnitude, therefore the number of magnetic flux rings participating in the mixing has to be increased correspondingly. On the other hand, our revised model takes advantage of the fact that the mean molecular weight of the rings formed in the vicinity of the hydrogen burning shell has been reduced by 3He burning. This increases their thermohaline buoyancy (hence, decreases the total ring number) considerably, making it equivalent to the pure magnetic buoyancy produced by a frozen-in toroidal field with B_phi ~ 10 MG. We emphasize that some toroidal field is still needed for the rings to remain cohesive while rising. Besides, this field prevents the horizontal turbulent diffusion from eroding the mu contrast between the rings and their surrounding medium. We propose that the necessary toroidal magnetic field is generated by differential rotation of the radiative zone, that stretches a pre-existing poloidal field around the rotation axis, and that magnetic flux rings are formed as a result of its buoyancy-related instability.



قيم البحث

اقرأ أيضاً

Thermohaline mixing is a favoured mechanism for the so-called extra mixing on the red giant branch of low-mass stars. The mixing is triggered by the molecular weight inversion created above the hydrogen shell during first dredge-up when helium-3 burn s via 3He(3He,2p)4He. The standard 1D diffusive mixing scheme cannot simultaneously match carbon and lithium abundances to NGC 6397 red giants. We investigate two modifications to the standard scheme: (1) an advective two stream mixing algorithm, and (2) modifications to the standard 1D thermohaline mixing formalism. We cannot simultaneously match carbon and lithium abundances using our two stream mixing approach. However we develop a modified diffusive scheme with an explicit temperature dependence that can simultaneously fit carbon and lithium abundances to NGC 6397 stars. Our modified diffusive scheme induces mixing that is faster than the standard theory predicts in the hotter part of the thermohaline region and mixing that is slower in the cooler part. Our results infer that the extra mixing mechanism needs further investigation and more observations are required, particularly for stars in different clusters spanning a range in metallicity.
We provide a brief review of thermohaline physics and why it is a candidate extra mixing mechanism during the red giant branch (RGB). We discuss how thermohaline mixing (also called $delta$ $mu$ mixing) during the RGB due to helium-3 burning, is more complicated than the operation of thermohaline mixing in other stellar contexts (such as following accretion from a binary companion). We try to use observations of carbon depletion in globular clusters to help constrain the formalism and the diffusion coefficient or mixing velocity that should be used in stellar models. We are able to match the spread of carbon depletion for metal poor field giants but are unable to do so for cluster giants, which may show evidence of mixing prior to even the first dredge-up event.
Extremely metal-poor (EMP) stars are an integral piece in the puzzle that is the early Universe, and although anomolous subclasses of EMP stars such as carbon-enhanced metal-poor (CEMP) stars are well-studied, they make up less than half of all EMP s tars with [Fe/H] $sim -3.0$. The amount of carbon depletion occurring on the red giant branch (carbon offset) is used to determine the evolutionary status of EMP stars, and this offset will differ between CEMP and normal EMP stars. The depletion mechanism employed in stellar models (from which carbon offfsets are derived) is very important, however the only widely available carbon offsets in the literature are derived from stellar models using a thermohaline mixing mechanism that cannot simultaneously match carbon and lithium abundances to observations for a single diffusion coeffcient. Our stellar evolution models utilise a modified thermohaline mixing model that can match carbon and lithium in the metal-poor globular cluster NGC 6397. We compare our models to the bulk of the EMP star sample at [Fe/H] $= -3$ and show that our modified models follow the trend of the observations and deplete less carbon compared to the standard thermohaline mixing theory. We conclude that stellar models that employ the standard thermohaline mixing formalism overestimate carbon offsets and hence CEMP star frequencies, particularly at metallicities where carbon-normal stars dominate the EMP star population.
The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secret s: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to emph{paparazze} the red giants according to the seismic pictures we have from their interiors.
55 - Howard E. Bond 2019
Carbon-deficient red giants (CDRGs) are a rare class of peculiar red giants, also called weak G-band or weak-CH stars. Their atmospheric compositions show depleted carbon, a low 12C/13C isotopic ratio, and an overabundance of nitrogen, indicating tha t the material at the surface has undergone CN-cycle hydrogen-burning. I present Stromgren uvby photometry of nearly all known CDRGs. Barium stars, having an enhanced carbon abundance, exhibit the Bond-Neff effect--a broad depression in their energy distributions at ~4000 A, recently confirmed to be due to the CH molecule. This gives Ba II stars unusually low Stromgren c1 photometric indices. I show that CDRGs, lacking CH absorption, exhibit an anti-Bond-Neff effect: higher c1 indices than normal red giants. Using precise parallaxes from Gaia DR2, I plot CDRGs in the color-magnitude diagram (CMD) and compare them with theoretical evolution tracks. Most CDRGs lie in a fairly tight clump in the CMD, indicating initial masses in the range ~2 to 3.5 Msun, if they have evolved as single stars. It is unclear whether they are stars that have just reached the base of the red-giant branch and the first dredge-up of CN-processed material, or are more highly evolved helium-burning stars in the red-giant clump. About 10% of CDRGs have higher masses of ~4 to 4.5 Msun, and exhibit unusually high rotational velocities. I show that CDRGs lie at systematically larger distances from the Galactic plane than normal giants, possibly indicating a role of binary mass-transfer and mergers. CDRGs continue to present a major puzzle for our understanding of stellar evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا