ﻻ يوجد ملخص باللغة العربية
We propose to use spatial correlations of the kinetic Sunyaev-Zeldovich (KSZ) flux as an estimator of the peculiar velocity power spectrum. In contrast with conventional techniques, our new method does not require measurements of the thermal SZ signal or the X-ray temperature. Moreover, this method has the special advantage that the expected systematic errors are always sub-dominant to statistical errors on all scales and redshifts of interest. We show that future large sky coverage KSZ surveys may allow a peculiar velocity power spectrum estimates of an accuracy reaching ~10%.
We constrain the velocity power spectrum shape parameter $Gamma$ in linear theory using the nine bulk-flow and shear moments estimated from four recent peculiar velocity surveys. For each survey, a likelihood function for $Gamma$ was found after marg
Redshift-space distortions (RSD) generically affect any spatially-dependent observable that is mapped using redshift information. The effect on the observed clustering of galaxies is the primary example of this. This paper is devoted to another examp
The large-scale structure of the Universe should soon be measured at high redshift during the Epoch of Reionization (EoR) through line-intensity mapping. A number of ongoing and planned surveys are using the 21 cm line to trace neutral hydrogen fluct
In this paper, we develop the method of analyzing the velocity field of cosmic matter with a multiresolution decomposition. This is necessary in calculating the redshift distortion of power spectrum in the discrete wavelet transform (DWT) representat
We present a new method for fitting peculiar velocity models to complete flux limited magnitude-redshifts catalogues, using the luminosity function of the sources as a distance indicator.The method is characterised by its robustness. In particular, n