ﻻ يوجد ملخص باللغة العربية
A comprehensive and detailed analysis of hadronic abundances measured in Au-Au collisions at RHIC at sqrt(s)_NN = 130 and 200 GeV is presented. The rapidity densities measured in the central rapidity region have been fitted to the statistical hadronization model and the chemical freeze-out parameters determined as a function of centrality, using data from experiments BRAHMS, PHENIX and STAR. The chemical freeze-out temperature turns out to be independent of centrality to a few percent accuracy, whereas the strangeness under-saturation parameter gamma_S decreases from almost unity in central collisions to a significantly lower value in peripheral collisions. Our results are in essential agreement with previous analyses, with the exception that fit quality at sqrt(s)_NN = 200 GeV is not as good as previously found. From the comparison of the two different energies, we conclude that the difference in fit quality, as described by chi2 values, is owing to the improved resolution of measurements which has probably exceeded the intrinsic accuracy of the simplified theoretical formula used in the fits.
We present a calculation of the global polarization of Lambda hyperons in relativistic Au-Au collisions at RHIC Beam Energy Scan range sqrt{s}_NN = 7.7 - 200 GeV with a 3+1 dimensional cascade + viscous hydro + cascade model, UrQMD+vHLLE. Within this
A QCD phase transition may reflect in a inhomogeneous decoupling surface of hadrons produced in relativistic heavy-ion collisions. We show that due to the non-linear dependence of the particle densities on the temperature and baryon-chemical potentia
We study the role of temperature and density inhomogeneities on the freeze-out of relativistic heavy ion collisions at CERN SPS. Especially the impact on the particle abundancies is investigated. The quality of the fits to the measured particle ratio
The freeze-out conditions in the light (S+S) and heavy (Pb+Pb) colliding systems of heavy nuclei at 160 AGeV/$c$ are analyzed within the microscopic Quark Gluon String Model (QGSM). We found that even for the most heavy systems particle emission take
We present an analysis of hadronic multiplicities measured in Pb-Pb collisions at sqrt s_{NN} = 2.76 TeV as a function of the collision centrality within the statistical hadronization model. Evidence is found of a dependence of the chemical freeze-ou