ترغب بنشر مسار تعليمي؟ اضغط هنا

New Constraints on Radiative Decay of Long-Lived Particles in Big Bang Nucleosynthesis with New $^4$He Photodisintegration Data

93   0   0.0 ( 0 )
 نشر من قبل Motohiko Kusakabe
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A recent measurement of $^4$He photodisintegration reactions, $^4$He($gamma$,$p$)$^3$H and $^4$He($gamma$,$n$)$^3$He with laser-Compton photons shows smaller cross sections than those estimated by other previous experiments at $E_gamma lesssim 30$ MeV. We study big-bang nucleosynthesis with the radiative particle decay using the new photodisintegration cross sections of $^4$He as well as previous data. The sensitivity of the yields of all light elements D, T, $^3$He, $^4$He, $^6$Li, $^7$Li and $^7$Be to the cross sections is investigated. The change of the cross sections has an influence on the non-thermal yields of D, $^3$He and $^4$He. On the other hand, the non-thermal $^6$Li production is not sensitive to the change of the cross sections at this low energy, since the non-thermal secondary synthesis of $^6$Li needs energetic photons of $E_gamma gtrsim 50$ MeV. The non-thermal nucleosynthesis triggered by the radiative particle decay is one of candidates of the production mechanism of $^6$Li observed in metal-poor halo stars (MPHSs). In the parameter region of the radiative particle lifetime and the emitted photon energy which satisfies the $^6$Li production above the abundance level observed in MPHSs, the change of the photodisintegration cross sections at $E_gamma lesssim 30$ MeV as measured in the recent experiment leads to $sim 10$% reduction of resulting $^3$He abundance, whereas the $^6$Li abundance does not change for this change of the cross sections of $^4$He($gamma$,$p$)$^3$H and $^4$He($gamma$,$n$)$^3$He. The $^6$Li abundance, however, could show a sizable change and therefore the future precise measurement of the cross sections at high energy $E_gamma gtrsim$ 50 MeV is highly required.



قيم البحث

اقرأ أيضاً

We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property.
We review important reactions in the big bang nucleosynthesis (BBN) model involving a long-lived negatively charged massive particle, $X^-$, which is much heavier than nucleons. This model can explain the observed $^7$Li abundances of metal-poor star s, and predicts a primordial $^9$Be abundance that is larger than the standard BBN prediction. In the BBN epoch, nuclei recombine with the $X^-$ particle. Because of the heavy $X^-$ mass, the atomic size of bound states $A_X$ is as small as the nuclear size. The nonresonant recombination rates are then dominated by the $d$-wave $rightarrow$ 2P transition for $^7$Li and $^{7,9}$Be. The $^7$Be destruction occurs via a recombination with the $X^-$ followed by a proton capture, and the primordial $^7$Li abundance is reduced. Also, the $^9$Be production occurs via the recombination of $^7$Li and $X^-$ followed by deuteron capture. The initial abundance and the lifetime of the $X^-$ particles are constrained from a BBN reaction network calculation. We estimate that the derived parameter region for the $^7$Li reduction is allowed in supersymmetric or Kaluza-Klein (KK) models. We find that either the selectron, smuon, KK electron or KK muon could be candidates for the $X^-$ with $m_Xsim {mathcal O}(1)$ TeV, while the stau and KK tau cannot.
We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property. This talk is based on works (Jittoh et al., 2011).
Precision on primordial abundances, deduced from observations, have now reached the percent level for 4He and deuterium. Precision on big bang nucleosynthesis (BBN) predictions should, hence, reach the same level. The uncertainty on the 4He mass frac tion is strongly affected by theoretical uncertainties on the weak reaction rates that interconvert neutrons with protons. All these corrections have been calculated in a self-consistent manner and implemented in a new, and public, Mathematica code PRIMAT, together with an extensive data base of reaction rates. Both can be obtained at http://www2.iap.fr/users/pitrou/primat.htm.
We use Big Bang Nucleosynthesis (BBN) data in order to impose constraints on the exponent of Barrow entropy. The latter is an extended entropy relation arising from the incorporation of quantum-gravitational effects on the black-hole structure, param eterized effectively by the new parameter $Delta$. When considered in a cosmological framework and under the light of the gravity-thermodynamics conjecture, Barrow entropy leads to modified cosmological scenarios whose Friedmann equations contain extra terms. We perform a detailed analysis of the BBN era and we calculate the deviation of the freeze-out temperature comparing to the result of standard cosmology. We use the observationally determined bound on $ |frac{delta {T}_f}{{T}_f}|$ in order to extract the upper bound on $Delta$. As we find, the Barrow exponent should be inside the bound $Deltalesssim 1.4times 10^{-4}$ in order not to spoil the BBN epoch, which shows that the deformation from standard Bekenstein-Hawking expression should be small as expected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا