ﻻ يوجد ملخص باللغة العربية
A recent measurement of $^4$He photodisintegration reactions, $^4$He($gamma$,$p$)$^3$H and $^4$He($gamma$,$n$)$^3$He with laser-Compton photons shows smaller cross sections than those estimated by other previous experiments at $E_gamma lesssim 30$ MeV. We study big-bang nucleosynthesis with the radiative particle decay using the new photodisintegration cross sections of $^4$He as well as previous data. The sensitivity of the yields of all light elements D, T, $^3$He, $^4$He, $^6$Li, $^7$Li and $^7$Be to the cross sections is investigated. The change of the cross sections has an influence on the non-thermal yields of D, $^3$He and $^4$He. On the other hand, the non-thermal $^6$Li production is not sensitive to the change of the cross sections at this low energy, since the non-thermal secondary synthesis of $^6$Li needs energetic photons of $E_gamma gtrsim 50$ MeV. The non-thermal nucleosynthesis triggered by the radiative particle decay is one of candidates of the production mechanism of $^6$Li observed in metal-poor halo stars (MPHSs). In the parameter region of the radiative particle lifetime and the emitted photon energy which satisfies the $^6$Li production above the abundance level observed in MPHSs, the change of the photodisintegration cross sections at $E_gamma lesssim 30$ MeV as measured in the recent experiment leads to $sim 10$% reduction of resulting $^3$He abundance, whereas the $^6$Li abundance does not change for this change of the cross sections of $^4$He($gamma$,$p$)$^3$H and $^4$He($gamma$,$n$)$^3$He. The $^6$Li abundance, however, could show a sizable change and therefore the future precise measurement of the cross sections at high energy $E_gamma gtrsim$ 50 MeV is highly required.
We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes
We review important reactions in the big bang nucleosynthesis (BBN) model involving a long-lived negatively charged massive particle, $X^-$, which is much heavier than nucleons. This model can explain the observed $^7$Li abundances of metal-poor star
We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes
Precision on primordial abundances, deduced from observations, have now reached the percent level for 4He and deuterium. Precision on big bang nucleosynthesis (BBN) predictions should, hence, reach the same level. The uncertainty on the 4He mass frac
We use Big Bang Nucleosynthesis (BBN) data in order to impose constraints on the exponent of Barrow entropy. The latter is an extended entropy relation arising from the incorporation of quantum-gravitational effects on the black-hole structure, param