ترغب بنشر مسار تعليمي؟ اضغط هنا

HAT-P-9b: A Low Density Planet Transiting a Moderately Faint F star

197   0   0.0 ( 0 )
 نشر من قبل Avi Shporer
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a planet transiting a moderately faint (V=12.3 mag) late F star, with an orbital period of 3.92289 +/- 0.00004 days. From the transit light curve and radial velocity measurements we determine that the radius of the planet is R_p = 1.40 +/- 0.06 R_Jup and that the mass is M_p = 0.78 +/- 0.09 M_Jup. The density of the new planet, rho = 0.35 +/- 0.06 g cm^{-3}, fits to the low-density tail of the currently known transiting planets. We find that the center of transit is at T_c = 2454417.9077 +/- 0.0003 (HJD), and the total transit duration is 0.143 +/- 0.004 days. The host star has M_s = 1.28 +/- 0.13 M_Sun and R_s = 1.32 +/- 0.07 R_Sun.



قيم البحث

اقرأ أيضاً

170 - S. N. Quinn 2010
We report the discovery of HAT-P-25b, a transiting extrasolar planet orbiting the V = 13.19 G5 dwarf star GSC 1788-01237, with a period P = 3.652836 +/- 0.000019 days, transit epoch Tc = 2455176.85173 +/- 0.00047 (BJD), and transit duration 0.1174 +/ - 0.0017 days. The host star has mass of 1.01 +/- 0.03 M(Sun), radius of 0.96 +(0.05)-(0.04) R(Sun), effective temperature 5500 +/- 80 K, and metallicity [Fe/H] = +0.31 +/- 0.08. The planetary companion has a mass of 0.567 +/- 0.022 M(Jup), and radius of 1.190 +(0.081)-(0.056) R(Jup) yielding a mean density of 0.42 +/- 0.07 g cm-3. Comparing these observations with recent theoretical models, we find that HAT-P-25b is consistent with a hydrogen-helium dominated gas giant planet with negligible core mass and age 3.2 +/- 2.3 Gyr. The properties of HAT-P-25b support several previously observed correlations for planets in the mass range 0.4 < M < 0.7 M(Jup), including those of core mass vs. metallicity, planet radius vs. equilibrium temperature, and orbital period vs. planet mass. We also note that HAT-P-25b orbits the faintest star found by HATNet to have a transiting planet to date, and is one of only a very few number of planets discovered from the ground orbiting a star fainter than V = 13.0.
We report the discovery of HAT-P-26b, a transiting extrasolar planet orbiting the moderately bright V=11.744 K1 dwarf star GSC 0320-01027, with a period P = 4.234516 +- 0.000015 d, transit epoch Tc = 2455304.65122 +- 0.00035 (BJD), and transit durati on 0.1023 +- 0.0010 d. The host star has a mass of 0.82 +- 0.03 Msun, radius of 0.79 + 0.10 - 0.04 Rsun, effective temperature 5079 +- 88 K, and metallicity [Fe/H] = -0.04 +- 0.08. The planetary companion has a mass of 0.059 +- 0.007 MJ, and radius of 0.565 + 0.072 - 0.032 RJ yielding a mean density of 0.40 +- 0.10 g cm-3. HAT-P-26b is the fourth Neptune-mass transiting planet discovered to date. It has a mass that is comparable to those of Neptune and Uranus, and slightly smaller than those of the other transiting Super-Neptunes, but a radius that is ~65% larger than those of Neptune and Uranus, and also larger than those of the other transiting Super-Neptunes. HAT-P-26b is consistent with theoretical models of an irradiated Neptune-mass planet with a 10 Mearth heavy element core that comprises >~ 50% of its mass with the remainder contained in a significant hydrogen-helium envelope, though the exact composition is uncertain as there are significant differences between various theoretical models at the Neptune-mass regime. The equatorial declination of the star makes it easily accessible to both Northern and Southern ground-based facilities for follow-up observations.
We report the discovery of the transiting extrasolar planet HAT-P-49b. The planet transits the bright (V = 10.3) slightly evolved F-star HD 340099 with a mass of 1.54M_S and a radius of 1.83 R_S. HAT-P-49b is orbiting one of the 25 brightest stars to host a transiting planet which makes this a favorable candidate for detailed follow-up. This system is an especially strong target for Rossiter- McLaughlin follow-up due to the fast rotation of the host star, 16 km/s. The planetary companion has a period of 2.6915 d, mass of 1.73 M_J and radius of 1.41 R_J. The planetary characteristics are consistent with that of a classical hot Jupiter but we note that this is the fourth most massive star to host a transiting planet with both M_p and R_p well determined.
393 - R. W. Noyes 2008
In the ongoing HATNet survey we have detected a giant planet, with radius 1.33 +/- 0.06 RJup and mass 1.06 +/- 0.12 MJup, transiting the bright (V = 10.5) star GSC 03239-00992. The planet is in a circular orbit with period 3.852985 +/- 0.000005 days and mid-transit epoch 2,454,035.67575 +/- 0.00028 (HJD). The parent star is a late F star with mass 1.29 +/- 0.06 Msun, radius 1.46 +/- 0.06 Rsun, Teff ~ 6570 +/- 80 K, [Fe=H] = -0.13 +/- 0.08 and age ~ 2.3+/-^{0.5}_{0.7}Gy. With this radius and mass, HAT-P-6b has somewhat larger radius than theoretically expected. We describe the observations and their analysis to determine physical properties of the HAT-P-6 system, and briefly discuss some implications of this finding.
160 - J. D. Hartman 2009
We report on the discovery of HAT-P-12b, a transiting extrasolar planet orbiting the moderately bright V=12.8 K4 dwarf GSC 03033-00706, with a period P = 3.2130598 +- 0.0000021 d, transit epoch Tc = 2454419.19556 +- 0.00020 (BJD) and transit duration 0.0974 +- 0.0006 d. The host star has a mass of 0.73 +- 0.02 Msun, radius of 0.70 +- ^0.02_0.01 Rsun, effective temperature 4650 +- 60 K and metallicity [Fe/H] = -0.29 +- 0.05. We find a slight correlation between the observed spectral line bisector spans and the radial velocity, so we consider, and rule out, various blend configurations including a blend with a background eclipsing binary, and hierarchical triple systems where the eclipsing body is a star or a planet. We conclude that a model consisting of a single star with a transiting planet best fits the observations, and show that a likely explanation for the apparent correlation is contamination from scattered moonlight. Based on this model, the planetary companion has a mass of 0.211 +- 0.012 MJup, and a radius of 0.959 +- ^0.029_0.021 RJup yielding a mean density of 0.295 +- 0.025 g cm^-3. Comparing these observations with recent theoretical models we find that HAT-P-12b is consistent with a ~ 1-4.5 Gyr, mildly irradiated, H/He dominated planet with a core mass Mc <~ 10 Mearth. HAT-P-12b is thus the least massive H/He dominated gas giant planet found to date. This record was previously held by Saturn.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا