ﻻ يوجد ملخص باللغة العربية
The dynamics of a central spin-1/2 in presence of a local magnetic field and a bath of N spin-1/2 particles is studied in the thermodynamic limit. The interaction between the spins is Heisenberg XY type and the bath is considered to be a perfect thermal reservoir. In this case, the evolution of the populations of the reduced density matrix are obtained for different temperatures. A Born approximation is made but not a Markov approximation resulting a non-Markovian dynamics. The measure of the way that the system mixes is obtained by means of the von Neumann entropy. For low temperatures, results show that there are oscillations of populations and of the von Neumann entropy, indicating that the central spin becomes a pure state with characteristic time periods in which it is possible to extract or recuperate information. In the regime of high temperatures, the evolution shows a final maximum mixed state with entropy S=ln 2 as it is expected for a two level system.
A central challenge for implementing quantum computing in the solid state is decoupling the qubits from the intrinsic noise of the material. We investigate the implementation of quantum gates for a paradigmatic, non-Markovian model: A single qubit co
We study the open dynamics of a quantum two-level system coupled to an environment modeled by random matrices. Using the quantum channel formalism, we investigate different quantum Markovianity measures and criteria. A thorough analysis of the whole
We study the analytically solvable Ising model of a single qubit system coupled to a spin bath. The purpose of this study is to analyze and elucidate the performance of Markovian and non-Markovian master equations describing the dynamics of the syste
The study of open quantum systems is important for fundamental issues of quantum physics as well as for technological applications such as quantum information processing. The interaction of a quantum system with its environment is usually detrimental
The time evolution of the distribution and shareability of quantum coherence of a tripartite system in a non-Markovian environment is examined. The total coherence can be decomposed into various contributions, ranging from local, global bipartite and