ﻻ يوجد ملخص باللغة العربية
We compute the integral torus-equivariant cohomology ring for weighted projective space for two different torus actions by embedding the cohomology in a sum of polynomial rings $oplus_{i=0}^n Z[t_1, t_2,..., t_n]$. One torus action gives a result complementing that of Bahri, Franz, and Ray. For the other torus action, each basis class for weighted projective space is a multiple of the basis class for ordinary projective space; we identify each multiple explicitly. We also give a simple formula for the structure constants of the equivariant cohomology ring of ordinary projective space in terms of the basis of Schubert classes, as a sequence of divided difference operators applied to a specific polynomial.
This survey paper describes two geometric representations of the permutation group using the tools of toric topology. These actions are extremely useful for computational problems in Schubert calculus. The (torus) equivariant cohomology of the flag v
Let $G$ be a discrete group. We prove that the category of $G$-posets admits a model structure that is Quillen equivalent to the standard model structure on $G$-spaces. As is already true nonequivariantly, the three classes of maps defining the model
Let $mathcal{D}$ be a weighted oriented graph and $I(mathcal{D})$ be its edge ideal. In this paper, we show that all the symbolic and ordinary powers of $I(mathcal{D})$ coincide when $mathcal{D}$ is a weighted oriented certain class of tree. Fi
We rework and generalize equivariant infinite loop space theory, which shows how to construct G-spectra from G-spaces with suitable structure. There is a naive version which gives naive G-spectra for any topological group G, but our focus is on the c
We investigate the existence and non-existence of maximal green sequences for quivers arising from weighted projective lines. Let $Q$ be the Gabreil quiver of the endomorphism algebra of a basic cluster-tilting object in the cluster category $mathcal