ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature dependent correlations in covalent insulators

76   0   0.0 ( 0 )
 نشر من قبل Jan Kunes
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the peculiar behavior of FeSi and FeSb2 we study the effect of local electronic correlations on magnetic, transport and optical properties in a specific type of band insulator, namely a covalent insulator. Investigating a minimum model of covalent insulator within a single-site dynamical mean-field approximation we are able to obtain the crossover from low temperature non-magnetic insulator to high-temperature paramagnetic metal with parameters realistic for FeSi and FeSb2 systems. Our results show that the behavior of FeSi does not imply microscopic description in terms of Kondo insulator (periodic Anderson model) as can be often found in the literature, but in fact reflects generic properties of a broader class of materials.

قيم البحث

اقرأ أيضاً

67 - T. Ito , A. Chainani , T. Haruna 2005
The Luttinger surface of an organic metal (TTF-TCNQ), possessing charge order and spin-charge separation, is investigated using temperature dependent angle-resolved photoemission spectroscopy. The Luttinger surface topology, obtained from momentum di stribution curves, changes from quasi-2D(dimensional) to quasi-1D with temperature. The high temperature quasi-2D surface exhibits 4$k_F$ charge-density-wave (CDW) superstructure in the TCNQ derived holon band, in the absence of 2$k_F$ order. Decreasing temperature results in quasi-1D nested 2$k_F$ CDW order in the TCNQ spinon band and in the TTF surface. The results establish the link in momentum-space between charge order and spin-charge separation in a Luttinger liquid.
We have observed temperature-dependent reversal of the rectifying polarity in Au/Nb:SrTiO3 Schottky junctions. By simulating current-voltage characteristics we have found that the permittivity of SrTiO3 near the interface exhibits temperature depende nce opposite to that observed in the bulk, significantly reducing the barrier width. At low temperature, tunneling current dominates the junction transport due both to such barrier narrowing and to suppressed thermal excitations. The present results demonstrate that novel junction properties can be induced by the interface permittivity.
We report neutron diffraction and magnetization studies of the magnetic order in multiferroic BiFeO3. In ferroelectric monodomain single crystals, there are three magnetic cycloidal domains with propagation vectors equivalent by crystallographic symm etry. The cycloid period slowly grows with increasing temperature. The magnetic domain populations do not change with temperature except in the close vicinity of the N{P}eel temperature, at which, in addition, a small jump in magneti- zation is observed. No evidence for the spin-reorientation transitions proposed in previous Raman and dielectric studies is found. The magnetic cycloid is slightly anharmonic for T=5 K. The an- harmonicity is much smaller than previously reported in NMR studies. At room temperature, a circular cycloid is observed, within errors. We argue that the observed anharmonicity provides important clues for understanding electromagnons in BiFeO3.
Soft X-ray Angle-Resolved Photoemission Spectroscopy is applied to study in-plane band dispersions of Nickel as a function of probing depth. Photon energies between 190 and 780 eV were used to effectively probe up to 3-7 layers. The results show laye r dependent band dispersion of the Delta_2 minority-spin band which crosses the Fermi level in 3 or more layers, in contrast to known top 1-2 layers dispersion obtained using ultra-violet rays. The layer dependence corresponds to an increased value of exchange splitting and suggests reduced correlation effects in the bulk compared to the surface.
153 - Xing Feng , Jianwei Xiao , Bin Wen 2019
Understanding temperature-dependent hardness of covalent materials is not only of fundamental scientific interest, but also of crucial importance for technical applications. In this work, a temperature-dependent hardness formula for diamond-structure d covalent materials is constructed on the basis of the dislocation theory. Our results show that, at low temperature, the Vickers hardness is mainly controlled by Poissons ratio and shear modulus with the latter playing a dominant role. With increasing temperature, the plastic deformation mechanism undergoes a transition from shuffle-set dislocation control to glide-set dislocation control, leading to a steeper drop of hardness at high temperature. In addition, an intrinsic parameter, a3G, is revealed for diamond-structured covalent materials, which measures the resistance to soften at high temperature. Our hardness model shows remarkable agreement with experimental data. Current work not only sheds lights on the physical origin of hardness, but also provides a direct principle for superhard materials design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا