ﻻ يوجد ملخص باللغة العربية
There are two different proposals for the momentum of light in a transparent dielectric of refractive index n: Minkowskis version nE/c and Abrahms version E/(nc), where E and c are the energy and vacuum speed of light, respectively. Despite many tests and debates over nearly a century, momentum of light in a transparent dielectric remains controversial. In this Letter, we report a direct observation of the inward push force on the end face of a free nm fiber taper exerted by the outgoing light. Our results clearly support Abraham momentum. Our experiment also indicates an inward surface pressure on a dielectric exerted by the incident light, different from the commonly recognized pressure due to the specular reflection. Such an inward surface pressure by the incident light may be useful for precise design of the laser-induced inertially-confined fusion.
GaAs disk resonators (typical disk size 5 mum * 200 nm in our work) are good candidates for boosting optomechanical coupling thanks to their ability to confine both optical and mechanical energy in a sub-micron interaction volume. We present results
A nanoparticle detection scheme with single particle resolution is presented. The sensor contains only a taper fiber thus offering the advantages of compactness and installation flexibility. Sensing method is based on monitoring the transmitted light
We present a laser frequency comb based upon a 250 MHz mode-locked erbium-doped fiber laser that spans more than 300 terahertz of bandwidth, from 660 nm to 2000 nm. The system generates 1.2 nJ, 70 fs pulses at 1050 nm by amplifying the 1580 nm laser
We observe the dynamics of pulse trapping in a microstructured fiber. Few-cycle pulses create a system of two pulses: a Raman shifting soliton traps a pulse in the normal dispersion regime. When the soliton approaches a wavelength of zero group veloc
We use an optical fiber taper waveguide to probe PbS quantum dots (QDs) dried on Si photonic crystal cavities near 1.55 $mu$m. We demonstrate that a low density ($lesssim 100 mu$m$^{-2}$) of QDs does not significantly degrade cavity quality factors a