ترغب بنشر مسار تعليمي؟ اضغط هنا

QCD Explorer Based ea and gamma-a Colliders

37   0   0.0 ( 0 )
 نشر من قبل Saleh Sultansoy
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

TeV scale lepton-hadron and photon-hadron colliders are necessary both to clarify fundamental aspects of strong interactions and for adequate interpretation of the LHC data. Today, there are two realistic proposals for the post-HERA era, namely, QCD Explorer (QCD-E) and Large Hadron electron Collider (LHeC). Both QCD-E and LHeC can operate as eA colliders, whereas gamma-p and gamma-A options are unique for QCD-E. Another advantage of QCD-E is the possibility to increase the center of mass energy by lengthening of electron linac. In this presentation main parameters of the QCD-E nucleus options are discussed.

قيم البحث

اقرأ أيضاً

90 - H. Karadeniz 2006
TeV center of mass energy lepton-hadron collider is necessary both to clarify fundamental aspects of strong interactions and for adequate interpretation of the LHC data. Recently proposed QCD Explorer utilizes the energy advantage of the LHC proton a nd ion beams, which allows the usage of relatively low energy electron beam. Two options for the LHC based ep collider are posibble: construction of a new electron ring in the LHC tunnel or construction of an e-linac tangentially to the LHC. In the latter case, which seems more acceptable for a number of reasons, two options are under consideration for electron linac: the CLIC technology allows shorter linac length, whereas TESLA technology gives higher luminosity.
The feasibility of a CLIC-LHC based FEL-nucleus collider is investigated. It is shown that the proposed scheme satisfies all requirements of an ideal photon source for the Nuclear Resonance Fluorescence method. The physics potential of the proposed collider is illustrated for a beam of Pb nuclei.
Gamma-proton collisions allow unprecedented investigations of the low x and high $Q^{2}$ regions in quantum chromodynamics. In this paper, we investigate the luminosity for ILC$times$LHC ($sqrt{s_{ep}}=1.3$ TeV) and CLIC$times$LHC ($sqrt{s_{ep}}=1.45 $ TeV) based $gamma p$ colliders. Also we determine the laser properties required for high conversion efficiency.
QCD instantons are arguably the best motivated yet unobserved nonperturbative effects predicted by the Standard Model. A discovery and detailed study of instanton-generated processes at colliders would provide a new window into the phenomenological e xploration of QCD and a vastly improved fundamental understanding of its non-perturbative dynamics. Building on the optical theorem, we numerically calculate the total instanton cross-section from the elastic scattering amplitude, also including quantum effects arising from resummed perturbative exchanges between hard gluons in the initial state, thereby improving in accuracy on previous results. Although QCD instanton processes are predicted to be produced with a large scattering cross-section at small centre-of-mass partonic energies, discovering them at hadron colliders is a challenging task that requires dedicated search strategies. We evaluate the sensitivity of high-luminosity LHC runs, as well as low-luminosity LHC and Tevatron runs. We find that LHC low-luminosity runs in particular, which do not suffer from large pileup and trigger thresholds, show a very good sensitivity for discovering QCD instanton-generated processes.
66 - Lipei Du 2021
Fireballs created in relativistic heavy-ion collisions at different beam energies have been argued to follow different trajectories in the QCD phase diagram in which the QCD critical point serves as a landmark. Using a (1+1)-dimensional model setting with transverse homogeneity, we study the complexities introduced by the fact that the evolution history of each fireball cannot be characterized by a single trajectory but rather covers an entire swath of the phase diagram, with the finally emitted hadron spectra integrating over contributions from many different trajectories. Studying the phase diagram trajectories of fluid cells at different space-time rapidities, we explore how baryon diffusion shuffles them around, and how they are affected by critical dynamics near the QCD critical point. We find a striking insensitivity of baryon diffusion to critical effects. Its origins are analyzed and possible implications discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا