ترغب بنشر مسار تعليمي؟ اضغط هنا

Eigenvalue multiplicity and volume growth

126   0   0.0 ( 0 )
 نشر من قبل James Lee
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $G$ be a finite group with symmetric generating set $S$, and let $c = max_{R > 0} |B(2R)|/|B(R)|$ be the doubling constant of the corresponding Cayley graph, where $B(R)$ denotes an $R$-ball in the word-metric with respect to $S$. We show that the multiplicity of the $k$th eigenvalue of the Laplacian on the Cayley graph of $G$ is bounded by a function of only $c$ and $k$. More specifically, the multiplicity is at most $exp((log c)(log c + log k))$. Similarly, if $X$ is a compact, $n$-dimensional Riemannian manifold with non-negative Ricci curvature, then the multiplicity of the $k$th eigenvalue of the Laplace-Beltrami operator on $X$ is at most $exp(n^2 + n log k)$. The first result (for $k=2$) yields the following group-theoretic application. There exists a normal subgroup $N$ of $G$, with $[G : N] leq alpha(c)$, and such that $N$ admits a homomorphism onto the cyclic group $Z_M$, where $M geq |G|^{delta(c)}$ and $alpha(c), delta(c) > 0$ are explicit functions depending only on $c$. This is the finitary analog of a theorem of Gromov which states that every infinite group of polynomial growth has a subgroup of finite index which admits a homomorphism onto the integers. This addresses a question of Trevisan, and is proved by scaling down Kleiners proof of Gromovs theorem. In particular, we replace the space of harmonic functions of fixed polynomial growth by the second eigenspace of the Laplacian on the Cayley graph of $G$.


قيم البحث

اقرأ أيضاً

82 - Enrico Le Donne 2016
Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance. We present the basic theory of Carnot groups together with several remarks. We consider them as special cases of graded groups and as homogeneous metric spaces. We discuss the regularity of isometries in the general case of Carnot-Caratheodory spaces and of nilpotent metric Lie groups.
215 - Michael Munn 2014
Let $(X,d)$ be an $n$-dimensional Alexandrov space whose Hausdorff measure $mathcal{H}^n$ satisfies a condition giving the metric measure space $(X,d,mathcal{H}^n)$ a notion of having nonnegative Ricci curvature. We examine the influence of large vol ume growth on these spaces and generalize some classical arguments from Riemannian geometry showing that when the volume growth is sufficiently large, then $(X,d,mathcal{H}^n)$ has finite topological type.
228 - Bobo Hua , Juergen Jost 2012
We consider harmonic functions of polynomial growth of some order $d$ on Cayley graphs of groups of polynomial volume growth of order $D$ w.r.t. the word metric and prove the optimal estimate for the dimension of the space of such harmonic functions. More precisely, the dimension of this space of harmonic functions is at most of order $d^{D-1}$. As in the already known Riemannian case, this estimate is polynomial in the growth degree. More generally, our techniques also apply to graphs roughly isometric to Cayley graphs of groups of polynomial volume growth.
218 - Michael Munn 2010
We examine topological properties of pointed metric measure spaces $(Y, p)$ that can be realized as the pointed Gromov-Hausdorff limit of a sequence of complete, Riemannian manifolds ${(M^n_i, p_i)}_{i=1}^{infty}$ with nonnegative Ricci curvature. Ch eeger and Colding cite{ChCoI} showed that given such a sequence of Riemannian manifolds it is possible to define a measure $ u$ on the limit space $(Y, p)$. In the current work, we generalize previous results of the author to examine the relationship between the topology of $(Y, p)$ and the volume growth of $ u$. In particular, we prove a Abresch-Gromoll type excess estimate for triangles formed by limiting geodesics in the limit space. Assuming explicit volume growth lower bounds in the limit, we show that if $lim_{r to infty} frac{ u(B_p(r))}{omega_n r^n} > alpha(k,n)$, then the $k$-th group of $(Y,p)$ is trivial. The constants $alpha(k,n)$ are explicit and depend only on $n$, the dimension of the manifolds ${(M^n_i, p_i)}$, and $k$, the dimension of the homotopy in $(Y,p)$.
We construct examples of smooth 4-dimensional manifolds M supporting a locally CAT(0)-metric, whose universal cover X satisfy Hruskas isolated flats condition, and contain 2-dimensional flats F with the property that the boundary at infinity of F def ines a nontrivial knot in the boundary at infinity of X. As a consequence, we obtain that the fundamental group of M cannot be isomorphic to the fundamental group of any Riemannian manifold of nonpositive sectional curvature. In particular, M is a locally CAT(0)-manifold which does not support any Riemannian metric of nonpositive sectional curvature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا