ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffraction of fast atoms and molecules from surfaces

358   0   0.0 ( 0 )
 نشر من قبل Joseph Manson
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Prompted by recent experimental developments, a theory of surface scattering of fast atoms at grazing incidence is developed. The theory gives rise to a quantum mechanical limit for ordered surfaces that describes coherent diffraction peaks whose thermal attenuation is governed by a Debye-Waller factor, however, this Debye-Waller factor has values much larger than would be calculated using simple models. A classical limit for incoherent scattering is obtained for high energies and temperatures. Between these limiting classical and quantum cases is another regime in which diffraction features appear that are broadened by the motion in the fast direction of the scattered beam but whose intensity is not governed by a Debye-Waller factor. All of these limits appear to be accessible within the range of currently available experimental conditions.

قيم البحث

اقرأ أيضاً

Light scalar Dark Matter with scalar couplings to matter is expected within several scenarios to induce variations in the fundamental constants of nature. Such variations can be searched for, among other ways, via atomic spectroscopy. Sensitive atomi c observables arise primarily due to possible changes in the fine-structure constant or the electron mass. Most of the searches to date have focused on slow variations of the constants (i.e. modulation frequencies $<$ 1 Hz). In a recent experiment mbox{[Phys. Rev. Lett. 123, 141102 (2019)]} called WReSL (Weekend Relaxion-Search Laboratory), we reported on a direct search for rapid variations in the radio-frequency band. Such a search is particularly motivated within a class of relaxion Dark Matter models. We discuss the WReSL experiment, report on progress towards improved measurements of rapid fundamental constant variations, and discuss the planned extension of the work to molecules, in which rapid variations of the nuclear mass can be sensitively searched for.
We demonstrate a trap that confines polarizable particles around the antinode of a standing-wave microwave field. The trap relies only on the polarizability of the particles far from any resonances, so can trap a wide variety of atoms and molecules i n a wide range of internal states, including the ground state. The trap has a volume of about 10 cm$^3$, and a depth approaching 1 K for many polar molecules. We measure the trap properties using $^{7}$Li atoms, showing that when the input microwave power is 610 W, the atoms remain trapped with a $1/e$ lifetime of 1.76(12) s, oscillating with an axial frequency of 28.55(5) Hz and a radial frequency of 8.81(8) Hz. The trap could be loaded with slow molecules from a range of available sources, and is particularly well suited to sympathetic cooling and evaporative cooling of molecules.
We have investigated Feshbach resonances in collisions of high-spin atoms such as Er and Dy with closed-shell atoms such as Sr and Yb, using coupled-channel scattering and bound-state calculations. We consider both low-anisotropy and high-anisotropy limits. In both regimes we find many resonances with a wide variety of widths. The wider resonances are suitable for tuning interatomic interactions, while some of the narrower resonances are highly suitable for magnetoassociation to form high-spin molecules. These molecules might be transferred to short-range states, where they would have large magnetic moments and electric dipole moments that can be induced with very low electric fields. The results offer the opportunity to study mixed quantum gases where one species is dipolar and the other is not, and open up important prospects for a new field of ultracold high-spin polar molecules.
This article reviews recent developments in tests of fundamental physics using atoms and molecules, including the subjects of parity violation, searches for permanent electric dipole moments, tests of the CPT theorem and Lorentz symmetry, searches fo r spatiotemporal variation of fundamental constants, tests of quantum electrodynamics, tests of general relativity and the equivalence principle, searches for dark matter, dark energy and extra forces, and tests of the spin-statistics theorem. Key results are presented in the context of potential new physics and in the broader context of similar investigations in other fields. Ongoing and future experiments of the next decade are discussed.
We study the generation of terahertz radiation from atoms and molecules driven by an ultrashort fundamental laser and its second harmonic field by solving time-dependent Schrodinger equation (TDSE). The comparisons between one-, two-, and three- dime nsional TDSE numerical simulations show that initial ionized wave-packet and its subsequent acceleration in the laser field and rescattering with long-range Coulomb potential play key roles. We also present the dependence of the optimum phase delay and yield of terahertz radiation on the laser intensity, wavelength, duration, and the ratio of two-color laser components. Terahertz wave generation from model hydrogen molecules are further investigated by comparing with high harmonic emission. It is found that the terahertz yield is following the alignment dependence of ionization rate, while the optimal two-color phase delays varies by a small amount when the alignment angle changes from 0 to 90 degrees, which reflects alignment dependence of attosecond electron dynamics. Finally we show that terahertz emission might be used to clarify the origin of interference in high harmonic generation from aligned molecules by coincidently measuring the angle-resolved THz yields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا