ترغب بنشر مسار تعليمي؟ اضغط هنا

From primordial $^4$He abundance to the Higgs field

35   0   0.0 ( 0 )
 نشر من قبل Josef Martin Ga{\\ss}ner
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We constrain the possible time variation of the Higgs vacuum expectation value ($v$) by recent results on the primordial $^4$He abundance ($Y_P$). For that, we improve the analytic models of the key-processes in our previous analytic calculation of the primordial $^4$He abundance. Furthermore, the latest results on the neutron decay, the baryon to photon ratio based on 5-year WMAP observations and a new dependence of the deuteron binding energy on $v$ are incorporated. Finally, we approximate the weak freeze-out, the cross section of photo-disintegration of the deuteron, the mean lifetime of the free neutron, the mass difference of neutron and proton, the Fermi coupling constant, the mass of the electron and the binding energy of the deuteron by terms of $v$, to constrain its possible time variation by recent results on the primordial $^4$He abundance: $|frac{Delta v}{v}| ~ leq 1.5 cdot 10^{-4}$.

قيم البحث

اقرأ أيضاً

We report the results of a detailed calculation of nucleon weak interactions relevant for the neutron to proton density ratio at the onset of primordial nucleosynthesis. Radiative electromagnetic corrections, finite nucleon mass terms, thermal radiat ive effects on weak processes and on neutrino temperature are taken into account to reduce the theoretical uncertainty on $n leftrightarrow p $ rates to 1%. This translates into a sensitivity in $^4 He$ mass fraction $Y_p$ prediction up to $10^{-4}$. We find a positive total correction to the Born prediction $delta Y_p simeq 0.004$.
Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) are two major pillars of cosmology. Standard BBN accurately predicts the primordial light element abundances ($^4$He, D, $^3$He and $^7$Li), depending on one parameter, the bary on density. Light element observations are used as a baryometers. The CMB anisotropies also contain information about the content of the universe which allows an important consistency check on the Big Bang model. In addition CMB observations now have sufficient accuracy to not only determine the total baryon density, but also resolve its principal constituents, H and $^4$He. We present a global analysis of all recent CMB data, with special emphasis on the concordance with BBN theory and light element observations. We find $Omega_{B}h^{2}=0.025+0.0019-0.0026$ and $Y_{p}=0.250+0.010-0.014$ (fraction of baryon mass as $^4$He) using CMB data alone, in agreement with $^4$He abundance observations. With this concordance established we show that the inclusion of BBN theory priors significantly reduces the volume of parameter space. In this case, we find $Omega_{B}h^2=0.0244+0.00137-0.00284$ and $Y_p = 0.2493+0.0006-0.001$. We also find that the inclusion of deuterium abundance observations reduces the $Y_p$ and $Omega_{B}h^2$ ranges by a factor of $sim $2. Further light element observations and CMB anisotropy experiments will refine this concordance and sharpen BBN and the CMB as tools for precision cosmology.
In the model where Primordial Black Holes (PBHs) form from large primordial curvature (C) perturbations, i.e., CPBHs, constraints on PBH abundance provide in principle constraints on the primordial curvature power spectrum. This connection however de pends necessarily on the details of PBH formation mechanism. In this paper we provide, for the first time, constraints on the primordial curvature power spectrum from the latest limits on PBH abundance, taking into account all the steps from gravitational collapse in real space to PBH formation. In particular, we use results from numerical relativity simulations and peak theory to study the conditions for PBH formation for a range of perturbation shapes, including non-linearities, perturbation profile and a careful treatment of smoothing and filtering scales. We then obtain updated PBH formation conditions and translate that into primordial spectrum constraints for a wide range of shapes and abundances. These updated constraints cover a range of scales not probed by other cosmological observables. Our results show that the correct and accurate modelling of non-linearities, filtering and typical perturbation profile, is crucial for deriving meaningful cosmological implications.
241 - Zhu Yi , Yungui Gong , Bin Wang 2020
We devise a novel mechanism and for the first time demonstrate that the Higgs model in particle physics can drive the inflation to satisfy the cosmic microwave background observations and simultaneously enhance the curvature perturbations at small sc ales to explain the abundance of dark matter in our universe in the form of primordial black holes. The production of primordial black holes is accompanied by the secondary gravitational waves induced by the first order Higgs fluctuations which is expected observable by space-based gravitational wave detectors. We propose possible cosmological probes of Higgs field in the future observations for primordial black holes dark matter or stochastic gravitational waves.
Primordial magnetic field (PMF) is one of the feasible candidates to explain observed large-scale magnetic fields, for example, intergalactic magnetic fields. We present a new mechanism that brings us information about PMFs on small scales based on t he abundance of primordial black holes (PBHs). The anisotropic stress of the PMFs can act as a source of the super-horizon curvature perturbation in the early universe. If the amplitude of PMFs is sufficiently large, the resultant density perturbation also has a large amplitude, and thereby, the PBH abundance is enhanced. Since the anisotropic stress of the PMFs is consist of the square of the magnetic fields, the statistics of the density perturbation follows the non-Gaussian distribution. Assuming Gaussian distributions and delta-function type power spectrum for PMFs, based on a Monte-Carlo method, we obtain an approximate probability density function of the density perturbation, and it is an important piece to relate the amplitude of PMFs with the abundance of PBHs. Finally, we place the strongest constraint on the amplitude of PMFs as a few hundred nano-Gauss on $10^{2};{rm Mpc}^{-1} leq kleq 10^{18};{rm Mpc}^{-1}$ where the typical cosmological observations never reach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا