ﻻ يوجد ملخص باللغة العربية
The phase behavior of poly (N-isopropylacrylamide) nanoparticles dispersed in aqueous medium is investigated as a function of temperature using static and dynamic light scattering techniques. The diameter, d of the particles, as determined by dynamic light scattering measurements on dilute dispersion showed a decrease in size from 273 nm at 25C to 114 nm at 40C as function of temperature with a sudden collapse of particle volume (volume phase transition) at 32.4C. Further this nanoparticle dispersion is found to turn turbid beyond volume phase transition. Static light scattering measurements on samples with intermediate concentration and high concentration showed liquid-like order and crystalline order respectively. The intensity of the Bragg peak of the crystallized sample when monitored as a function of temperature showed crystal to liquid transition at 26.2C and a fluid to fluid transition at 31C. The occurrence of melting at a volume fraction of 0.85 and the absence of change in number density across the fluid-to-fluid transition suggest that interparticle interaction is repulsive soft-sphere below the volume phase transition. The reported results on the phase behavior of poly(N-isopropylacrylamide) nanogel suspensions are discussed in the light of the present results.
Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) particles of different sizes are synthesized by varying the concentration of sodium dodecyl sulphate (SDS) in a one-pot method. The sizes, size polydispersities and the thermoresponsivity of the P
Synperonic F-108 (generic name, pluronic) is a micelle forming triblock copolymer of type ABA, where A is polyethylene oxide (PEO) and B is polypropylene oxide (PPO). At high temperatures, the hydrophobicity of the PPO chains increase, and the pluron
A high-resolution calorimetric spectroscopy study has been performed on pure glycerol and colloidal dispersions of an aerosil in glycerol covering a wide range of temperatures from 300 K to 380 K, deep in the liquid phase of glycerol. The colloidal g
When systems that can undergo phase separation between two coexisting phases in the bulk are confined in thin film geometry between parallel walls, the phase behavior can be profoundly modified. These phenomena shall be described and exemplified by c
Auger recombination (AR) of the ground biexciton state in quantum-confined lead salt nanowires (NWs) with a strong coupling between the conduction and the valence bands is shown to be strongly suppressed, and only excited biexciton states contribute