ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the effect of the atmospheric turbulence on the propagation of optical vertex formed from the radial coherent laser beam array, with the initially well-defined phase distribution. The propagation formula of the radial coherent laser array passing through the turbulent atmosphere is analytically derived by using the extended Huygens-Fresnel diffraction integral. Based on the derived formula, the effect of the atmospheric turbulence on the propagation properties of such laser arrays has been studied in great detail. Our main results show that the atmospheric turbulence may result in the prohibition of the formation of the optical vortex or the disappearance of the formed optical vortex, which are very different from that in the free space. The formed optical vortex with the higher topological charge may propagate over a much longer distance in the moderate or weak turbulent atmosphere. After the sufficient long-distance atmospheric propagation, all the output beams (even with initially different phase distributions) finally lose the vortex property and gradually become the Gaussian-shaped beams, and in this case the output beams actually become incoherent light fields due to the decoherence effect of the turbulent atmosphere.
We present a novel proposal to generate an optical vortex beam by using the coherent-superposition of multi-beams in a radial symmetrical configuration. In terms of the generalized Huygens-Fresnel diffraction integral, we have derived the general pro
Singular light beams with optical vortices (OV) are often generated by means of thin binary gratings with groove bifurcation (fork holograms) that produce a set of diffracted beams with different OV charges. Usually, only single separate beams are us
We present a new method for the generation of atmospheric turbulence phase screens based on the frequency shift property of the Fourier transform. This method produces low spatial frequency distortions without additional computation time penalties as
We present the ptychography reconstruction of the x-ray beam formed by nanofocusing lenses (NFLs) containing a number of phase singularities (vortices) in the vicinity of the focal plane. As a test object Siemens star pattern was used with the finest
Atmospheric turbulence generally limits free-space optical (FSO) communications, and this problem is severely exacerbated when implementing highly sensitive and spectrally efficient coherent detection. Specifically, turbulence induces power coupling