ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadamard Phylogenetic Methods and the n-taxon process

42   0   0.0 ( 0 )
 نشر من قبل David Bryant
 تاريخ النشر 2008
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف David Bryant




اسأل ChatGPT حول البحث

The Hadamard transform of cite{Hendy89a, Hendy89} provides a way to work with stochastic models for sequence evolution without having to deal with the complications of tree space and the graphical structure of trees. Here we demonstrate that the transform can be expressed in terms of the familiar $bP[bt] = e^{bQ[bt]}$ formula for Markov chains. The key idea is to study the evolution of vectors of states, one vector entry for each taxa; we call this the $n$-taxon process. We derive transition probabilities for the process. Significantly, the findings show that tree-based models are indeed in the family of (multi-variate) exponential distributions.

قيم البحث

اقرأ أيضاً

We derive an invertible transform linking two widely used measures of species diversity: phylogenetic diversity and the expected proportions of segregating (non-constant) sites. We assume a bi-allelic, symmetric, finite site model of substitution. Li ke the Hadamard transform of Hendy and Penny, the transform can be expressed completely independent of the underlying phylogeny. Our results bridge work on diversity from two quite distinct scientific communities.
Phylogenetic Diversity (PD) is a prominent quantitative measure of the biodiversity of a collection of present-day species (taxa). This measure is based on the evolutionary distance among the species in the collection. Loosely speaking, if $mathcal{T }$ is a rooted phylogenetic tree whose leaf set $X$ represents a set of species and whose edges have real-valued lengths (weights), then the PD score of a subset $S$ of $X$ is the sum of the weights of the edges of the minimal subtree of $mathcal{T}$ connecting the species in $S$. In this paper, we define several natural variants of the PD score for a subset of taxa which are related by a known rooted phylogenetic network. Under these variants, we explore, for a positive integer $k$, the computational complexity of determining the maximum PD score over all subsets of taxa of size $k$ when the input is restricted to different classes of rooted phylogenetic networks
Rooted phylogenetic networks provide a way to describe species relationships when evolution departs from the simple model of a tree. However, networks inferred from genomic data can be highly tangled, making it difficult to discern the main reticulat ion signals present. In this paper, we describe a natural way to transform any rooted phylogenetic network into a simpler canonical network, which has desirable mathematical and computational properties, and is based only on the visible nodes in the original network. The method has been implemented and we demonstrate its application to some examples.
Phylogenetic networks are generalizations of phylogenetic trees that allow the representation of reticulation events such as horizontal gene transfer or hybridization, and can also represent uncertainty in inference. A subclass of these, tree-based p hylogenetic networks, have been introduced to capture the extent to which reticulate evolution nevertheless broadly follows tree-like patterns. Several important operations that change a general phylogenetic network have been developed in recent years, and are important for allowing algorithms to move around spaces of networks; a vital ingredient in finding an optimal network given some biological data. A key such operation is the Nearest Neighbor Interchange, or NNI. While it is already known that the space of unrooted phylogenetic networks is connected under NNI, it has been unclear whether this also holds for the subspace of tree-based networks. In this paper we show that the space of unrooted tree-based phylogenetic networks is indeed connected under the NNI operation. We do so by explicitly showing how to get from one such network to another one without losing tree-basedness along the way. Moreover, we introduce some new concepts, for instance ``shoat networks, and derive some interesting aspects concerning tree-basedness. Last, we use our results to derive an upper bound on the size of the space of tree-based networks.
A recent paper (Manceau and Lambert, 2016) developed a novel approach for describing two well-defined notions of species based on a phylogenetic tree and a phenotypic partition. In this paper, we explore some further combinatorial properties of this approach and describe an extension that allows an arbitrary number of phenotypic partitions to be combined with a phylogenetic tree for these two species notions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا