ﻻ يوجد ملخص باللغة العربية
The visibility of graphene sheets on different types of substrates has been investigated both theoretically and experimentally. Although single layer graphene is observable on various types of dielectrics under an optical microscope, it is invisible when it is placed directly on most of the semiconductor and metallic substrates. We show that coating of a resist layer with optimum thickness is an effective way to enhance the contrast of graphene on various types of substrates and makes single layer graphene visible on most semiconductor and metallic substrates. Experiments have been performed to verify the results on quartz and NiFe-coated Si substrates. The results obtained will be useful for fabricating graphene-based devices on various types of substrates for electronics, spintronics and optoelectronics applications.
Graphene consists of single or few layers of crystalline ordered carbon atoms. Its visibility on oxidized silicon (Si/SiO_2) enabled its discovery and spawned numerous studies of its unique electronic properties. The combination of graphene with the
We investigate the optical properties of bromine intercalated highly orientated pyrolytic graphite (Br-HOPG) and provide a novel interpretation of the data. We observe new absorption features below 620 meV which are absent in the absorption spectrum
Rotational misalignment of two stacked honeycomb lattices produces a moire pattern that is observable in scanning tunneling microscopy as a small modulation of the apparent surface height. This is known from experiments on highly-oriented pyrolytic g
We report observations of tunneling anisotropic magnetoresitance (TAMR) in vertical tunnel devices with a ferromagnetic multilayer-(Co/Pt) electrode and a non-magnetic Pt counter-electrode separated by an AlOx barrier. In stacks with the ferromagneti
We use a tight-binding model and the random-phase approximation to study the Coulomb excitations in simple-hexagonal-stacking multilayer graphene and discuss the field effects. The calculation results include the energy bands, the response functions,