ﻻ يوجد ملخص باللغة العربية
Lutz-Kelker bias corrected absolute magnitude calibrations for the detached binary systems with main-sequence components are presented. The absolute magnitudes of the calibrator stars were derived at intrinsic colours of Johnson-Cousins and 2MASS (Two Micron All Sky Survey) photometric systems. As for the calibrator stars, 44 detached binaries were selected from the Hipparcos catalogue, which have relative observed parallax errors smaller than 15% ($sigma_{pi}/pileq0.15$). The calibration equations which provide the corrected absolute magnitude for optical and near-infrared pass bands are valid for wide ranges of colours and absolute magnitudes: $-0.18<(B-V)_{0}<0.91$, $-1.6<M_{V}<5.5$ and $-0.15<(J-H)_{0}<0.50$, $-0.02<(H-K_{s})_{0}<0.13$, $0<M_{J}<4$, respectively. The distances computed using the luminosity-colours (LCs) relation with optical (BV) and near-infrared ($JHK_{s}$) observations were compared to the distances found from various other methods. The results show that new absolute magnitude calibrations of this study can be used as a convenient statistical tool to estimate the true distances of detached binaries out of Hipparcos distance limit.
Parallaxes of W UMa stars in the Hipparcos catalogue have been analyzed. 31 W UMa stars, which have the most accurate parallaxes ($sigma_{pi}/pi<0.15$) which are neither associated with a photometric tertiary nor with evidence of a visual companion,
We present new empirical calibrations of the absolute magnitude of the tip of the red giant branch (TRGB) in the optical I and near-infrared J, H, and K bands in terms of the (V-K)_0, (V-H)_0, and (J-K)_0 colors of the red giant branch. Our calibrati
The photometric and spectroscopic data for three double-lined detached eclipsing binaries were collected from the photometric and spectral surveys. The light and radial velocity curves of each binary system were simultaneously analyzed by using Wilso
In this study, photometric metallicity and absolute magnitude calibrations were derived using F-G spectral type main-sequence stars in the Solar neighbourhood with precise spectroscopic, photometric and Gaia astrometric data for UBV photometry. The s
We determine the orbits of four double degenerate systems (DDs), composed of two white dwarfs, and of two white dwarf -- M dwarf binaries. The four DDs, WD1022+050, WD1428+373, WD1824+040, and WD2032+188, show orbital periods of 1.157155(5) d, 1.1567