ﻻ يوجد ملخص باللغة العربية
Existence of metastable quarks of new generation can be embedded into phenomenology of heterotic string together with new long range interaction, which only this new generation possesses. We discuss primordial quark production in the early Universe, their successive cosmological evolution and astrophysical effects, as well as possible production in present or future accelerators. In case of a charge symmetry of 4th generation quarks in Universe, they can be stored in neutral mesons, doubly positively charged baryons, while all the doubly negatively charged baryons are combined with He-4 into neutral nucleus-size atom-like states. The existence of all these anomalous stable particles may escape present experimental limits, being close to present and future experimental test. Due to the nuclear binding with He-4 primordial lightest baryons of the 4th generation with charge +1 can also escape the experimental upper limits on anomalous isotopes of hydrogen, being compatible with upper limits on anomalous lithium. While 4th quark hadrons are rare, their presence may be nearly detectable in cosmic rays, muon and neutrino fluxes and cosmic electromagnetic spectra. In case of charge asymmetry, a nontrivial solution for the problem of dark matter (DM) can be provided by excessive (meta)stable anti-up quarks of 4th generation, bound with He-4 in specific nuclear-interacting form of dark matter. Such candidate to DM is surprisingly close to Warm Dark Matter by its role in large scale structure formation. It catalyzes primordial heavy element production in Big Bang Nucleosynthesis and new types of nuclear transformations around us.
The pair production of heavy fourth-generation quarks, which are predicted under the hypothesis of flavor democracy, is studied using tree-level Monte Carlo generators and fast detector simulation. Two heavy-quark mass values, 500 and 750$gev$, are c
We investigate the possibility that the dark matter consists of clusters of the heavy family quarks and leptons with zero Yukawa couplings to the lower families. Such a family is predicted by the approach unifying spins and charges as the fifth famil
We investigate the possibility that the dark matter consists of clusters of the heavy family quarks and leptons with zero Yukawa couplings to the lower families. Such a family is predicted by the {it approach unifying spin and charges} as the fifth f
We study the single production of the fourth family quarks through the process pp--> QjX at the Large Hadron Collider (LHC). We have calculated the decay widths and branching ratios of the fourth family quarks (b and t) in the mass range 300-800 GeV.
We propose a first model of quarks based on the discrete family symmetry Delta (6N^2) in which the Cabibbo angle is correctly determined by a residual Z_2 times Z_2 subgroup, and the smaller quark mixing angles may be qualitatively understood from th