ﻻ يوجد ملخص باللغة العربية
Detailed analyses of the temperature-dependent zero field ac susceptibility of prototypical phase-separated (La1-yPry)0.7Ca0.3Mn16/18O3, 0 < y < 1, reveal features consistent with the presence of a Griffiths phase (GP), viz., an inverse susceptibility characterized by power law with 0.05 < lamda < 0.33 as y decreases towards yc < 0.85. Beyond yc = 0.85, the GP is suppressed. These data, combined with previous neutron diffraction measurements, enable a phase diagram summarizing the evolution of the GP with composition to be constructed for this system; in particular, it shows that the disorder relevant for the establishment of such a phase is linked closely to the relative volume fractions of the phase separated antiferromagnetic and ferromagnetic components, even when the recently estimated double exchange (DE) linked percolation threshold is exceeded. The influence of electron-phonon coupling can also be seen through oxygen isotope effects.
We report on the discovery of a novel triangular phase regime in the system La1-xSrxMnO3 by means of electron spin resonance and magnetic susceptibility measurements. This phase is characterized by the coexistence of ferromagnetic entities within the
Critical points that can be suppressed to zero temperature are interesting because quantum fluctuations have been shown to dramatically alter electron gas properties. Here, the metal formed by Co doping the paramagnetic insulator FeS$_2$, Fe$_{1-x}$C
Magnetic topological phases of quantum matter are an emerging frontier in physics and material science. Along these lines, several kagome magnets have appeared as the most promising platforms. However, the magnetic nature of these materials in the pr
A systematic x-ray magnetic circular dichroism study of the paramagnetic phase of ErCo2 has recently allowed to identify the inversion of the net magnetization of the Co net moment with respect to the applied field well above the ferrimagnetic orderi
The structural and magnetic properties of double perovskiteTb2CoMnO6 have been investigated. Electronic structure analysis by XPS study reveals the presence of mixed oxidation state (Mn4+/Mn3+ and Co2+/Co3+) of B-site ions. The dc and ac magnetizatio