ﻻ يوجد ملخص باللغة العربية
We test the convergence property of the chiral perturbation theory (ChPT) using a lattice QCD calculation of pion mass and decay constant with two dynamical quark flavors. The lattice calculation is performed using the overlap fermion formulation, which realizes exact chiral symmetry at finite lattice spacing. By comparing various expansion prescriptions, we find that the chiral expansion is well saturated at the next-to-leading order (NLO) for pions lighter than $sim$450 MeV. Better convergence behavior is found in particular for a resummed expansion parameter $xi$, with which the lattice data in the pion mass region 290$sim$750 MeV can be fitted well with the next-to-next-to-leading order (NNLO) formulae. We obtain the results in two-flavor QCD for the low energy constants $bar{l}_3$ and $bar{l}_4$ as well as the pion decay constant, the chiral condensate, and the average up and down quark mass.
We investigate the nature of the chiral phase transition in the massless two-flavor QCD using the renormalization group improved gauge action and the Wilson quark action on $32^3times 16$, $24^3times 12$, and $16^3times 8$ lattices. We calculate the
We calculate pion vector and scalar form factors in two-flavor lattice QCD and study the chiral behavior of the vector and scalar radii <r^2>_{V,S}. Numerical simulations are carried out on a 16^3 x 32 lattice at a lattice spacing of 0.12 fm with qua
We evaluate the strangeness-conserving $N N$, $SigmaSigma$, $XiXi$, $LambdaSigma$ and the strangeness-changing $Lambda N$, $Sigma N$, $LambdaXi$, $SigmaXi$ axial charges in lattice QCD with two flavors of dynamical quarks and extend our previous work
We determine the generalized form factors, which correspond to the second Mellin moment (i.e., the first $x$-moment) of the generalized parton distributions of the nucleon at leading twist. The results are obtained using lattice QCD with $N_f=2$ nonp
We evaluate the $pi N!N$, $piSigmaSigma$, $piLambdaSigma$, $KLambda N$ and $K Sigma N $ coupling constants and the corresponding monopole masses in lattice QCD with two flavors of dynamical quarks. The parameters representing the SU(3)-flavor symmetr