ترغب بنشر مسار تعليمي؟ اضغط هنا

Heat transfer in sunspot penumbrae. Origin of dark-cored penumbral filaments

166   0   0.0 ( 0 )
 نشر من قبل Luis Ramon Bellot Rubio
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Ruiz Cobo




اسأل ChatGPT حول البحث

Context: Observations at 0.1 have revealed the existence of dark cores in the bright filaments of sunspot penumbrae. Expectations are high that such dark-cored filaments are the basic building blocks of the penumbra, but their nature remains unknown. Aims: We investigate the origin of dark cores in penumbral filaments and the surplus brightness of the penumbra. To that end we use an uncombed penumbral model. Methods: The 2D stationary heat transfer equation is solved in a stratified atmosphere consisting of nearly horizontal magnetic flux tubes embedded in a stronger and more vertical field. The tubes carry an Evershed flow of hot plasma. Results: This model produces bright filaments with dark cores as a consequence of the higher density of the plasma inside the tubes, which shifts the surface of optical depth unity toward higher (cooler) layers. Our calculations suggest that the surplus brightness of the penumbra is a natural consequence of the Evershed flow, and that magnetic flux tubes about 250 km in diameter can explain the morphology of sunspot penumbrae.



قيم البحث

اقرأ أيضاً

We present spectropolarimetric measurements of dark-cored penumbral filaments taken with Hinode at a resolution of 0.3. Our observations demonstrate that dark-cored filaments are more prominent in polarized light than in continuum intensity. Far from disk center, the Stokes profiles emerging from these structures are very asymmetric and show evidence for magnetic fields of different inclinations along the line of sight, together with strong Evershed flows of at least 6-7 km/s. In sunspots closer to disk center, dark-cored penumbral filaments exhibit regular Stokes profiles with little asymmetries due to the vanishing line-of-sight component of the horizontal Evershed flow. An inversion of the observed spectra indicates that the magnetic field is weaker and more inclined in the dark cores as compared with the surrounding bright structures. This is compatible with the idea that dark-cored filaments are the manifestation of flux tubes carrying hot Evershed flows.
The sunspot penumbra comprises numerous thin, radially elongated filaments that are central for heat transport within the penumbra, but whose structure is still not clear. To investigate the fine-scale structure of these filaments, we perform a depth -dependent inversion of spectropolarimetric data of a sunspot very close to solar disk center obtained by Hinode (SOT/SP). We have used a recently developed spatially coupled 2D inversion scheme which allows us to analyze the fine structure of individual penumbral filaments up to the diffraction limit of the telescope. Filaments of different sizes in all parts of penumbra display very similar magnetic field strengths, inclinations and velocity patterns. The similarities allowed us to average all these filaments and to extract the physical properties common to all of them. This average filament shows upflows associated with an upward pointing field at its inner, umbral end and along its axis, downflows along the lateral edge and strong downflows in the outer end associated with a nearly vertical, strong and downward pointing field. The upflowing plasma is significantly hotter than the downflowing plasma. The hot, tear-shaped head of the averaged filament can be associated with a penumbral grain. The central part of the filament shows nearly horizontal fields with strengths of ~1kG. The field above the filament converges, whereas a diverging trend is seen in the deepest layers near the head of the filament. We put forward a unified observational picture of a sunspot penumbral filament. It is consistent with such a filament being a magneto-convective cell, in line with recent MHD simulations. The uniformity of its properties over the penumbra sets constraints on penumbral models and simulations. The complex and inhomogeneous structure of the filament provides a natural explanation for a number of long-running controversies in the literature.
Sunspot penumbrae show high-velocity patches along the periphery. The high-velocity downflow patches are believed to be the return channels of the Evershed flow. We aim to investigate their structure in detail using Hinode SOT/SP observations. We emp loy Fourier interpolation in combination with spatially coupled height dependent LTE
We employ a 3-dimensional magnetohydrostatic model of a horizontal flux tube, embedded in a magnetic surrounding atmosphere, to successfully reproduce the azimuthal and center-to-limb variations of the Net Circular Polarization observed in sunspot pe numbrae. This success is partly due to the realistic modeling of the interaction between the flux tube and the surrounding magnetic field.
We study the velocity structure of penumbral filaments in the deep photosphere to obtain direct evidence for the convective nature of sunspot penumbrae. A sunspot was observed at high spatial resolution with the 1-m Swedish Solar Telescope in the dee p photospheric C I 5380 {AA} absorption line. The Multi-Object Multi-Frame Blind Deconvolution (MOMFBD) method is used for image restoration and straylight is filtered out. We report here the discovery of clear redshifts in the C I 5380 {AA} line at multiple locations in sunspot penumbral filaments. For example, bright head of filaments show larger concentrated blueshift and are surrounded by darker, redshifted regions, suggestive of overturning convection. Elongated downflow lanes are also located beside bright penumbral fibrils. Our results provide the strongest evidence yet for the presence of overturning convection in penumbral filaments and highlight the need to observe the deepest layers of the penumbra in order to uncover the energy transport processes taking place there.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا