ترغب بنشر مسار تعليمي؟ اضغط هنا

The changing accretion states of the intermediate polar MU Camelopardalis

121   0   0.0 ( 0 )
 نشر من قبل Axel D. Schwope
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the timing and spectral properties of the intermediate polar MU Camelopardalis (1RXS J062518.2+733433) to determine the accretion modes and the accretion geometry from multi-wavelength, multi-epoch observational data. Light curves in different observed energy ranges (optical, UV, X-ray) are extracted. The timescales of variability in these light curves are determined using Analysis of Variance. Phase-resolved X-ray spectra are created with respect to the most prominent detected periodicities and each fitted with an identical model, to quantify the differences in the fitted components. The published tentative value for the spin period is unambiguously identified with the rotation period of the white dwarf. We detect a distinct soft X-ray component that can be reproduced well by a black body. The analysis of data obtained at different epochs demonstrates that the system is changing its accretion geometry from disk-dominated to a combination of disk- plus stream-dominated, accompanied with a significant change in brightness at optical wavelengths.



قيم البحث

اقرأ أيضاً

In magnetically accreting white dwarfs, the height above the white dwarf surface where the standing shock is formed is intimately related with the accretion rate and the white dwarf mass. However, it is difficult to measure. We obtained new data with NuSTAR and Swift that, together with archival Chandra data, allow us to constrain the height of the shock in the intermediate polar EX Hya. We conclude that the shock has to form at least at a distance of about one white dwarf radius from the surface in order to explain the weak Fe K{alpha} 6.4 keV line, the absence of a reflection hump in the high-energy continuum, and the energy dependence of the white dwarf spin pulsed fraction. Additionally, the NuSTAR data allowed us to measure the true, uncontaminated hard X-ray (12-40 keV) flux, whose measurement was contaminated by the nearby galaxy cluster Abell 3528 in non-imaging X-ray instruments.
We present results of a study of the fast timing variability of the magnetic cataclysmic variable (mCV) EX Hya. It was previously shown that one may expect the rapid flux variability of mCVs to be smeared out at timescales shorter than the cooling ti me of hot plasma in the post shock region of the accretion curtain near the WD surface. Estimates of the cooling time and the mass accretion rate, thus provide us with a tool to measure the density of the post-shock plasma and the cross-sectional area of the accretion funnel at the WD surface. We have probed the high frequencies in the aperiodic noise of one of the brightest mCV EX Hya with the help of optical telescopes, namely SALT and the SAAO 1.9m telescope. We place upper limits on the plasma cooling timescale $tau<$0.3 sec, on the fractional area of the accretion curtain footprint $f<1.6times10^{-4}$, and a lower limit on the specific mass accretion rate $dot{M}/A gtrsim $3 g/sec/cm$^{-2}$. We show that measurements of accretion column footprints via eclipse mapping highly overestimate their areas. We deduce a value of $Delta r/r lesssim 10^{-3}$ as an upper limit to the penetration depth of the accretion disc plasma at the boundary of the magnetosphere.
We present optical and X-ray time-series photometry of EI UMa that reveal modulation at 746 and 770 s, which we interpret as the white dwarf spin and spin-orbit sidebands. These detections, combined with previous X-ray studies, establish EI UMa as an intermediate polar. We estimate the mass accretion rate to be ~ 3.6 x 10^{17} g s^{-1}, which is close to, and likely greater than, the critical rate above which dwarf nova instabilities are suppressed. We also estimate the white dwarf to have a large magnetic moment mu > (3.4 +/- 0.2) x 10^{33} G cm^3. The high mass accretion rate and magnetic moment imply the existence of an accretion ring rather than a disk, and along with the relatively long orbital period, these suggest that EI UMa is a rare example of a pre-polar cataclysmic variable.
We present the first optical photometry of the counterpart to the candidate intermediate polar RX J0153.3+7446. This reveals an optical pulse period of 2333s +/- 5s. Reanalysis of the previously published ROSAT X-ray data reveals that the true X-ray pulse period is probably 1974s +/- 30s, rather than the 1414 s previously reported. Given that the previously noted orbital period of the system is 3.94 h, we are able to identify the X-ray pulse period with the white dwarf spin period and the optical pulse period with the rotation period of the white dwarf in the binary reference frame, as commonly seen in other intermediate polars. We thus confirm that RX J0153.3+7446 is indeed a typical intermediate polar.
We present photometry of the intermediate polar FO Aquarii obtained as part of the K2 mission using the Kepler space telescope. The amplitude spectrum of the data confirms the orbital period of 4.8508(4) h, and the shape of the light curve is consist ent with the outer edge of the accretion disk being eclipsed when folded on this period. The average flux of FO Aquarii changed during the observations, suggesting a change in the mass accretion rate. There is no evidence in the amplitude spectrum of a longer period that would suggest disk precession. The amplitude spectrum also shows the white dwarf spin period of 1254.3401(4) s, the beat period of 1351.329(2) s, and 31 other spin and orbital harmonics. The detected period is longer than the last reported period of 1254.284(16) s, suggesting that FO Aqr is now spinning down, and has a positive $dot{P}$. There is no detectable variation in the spin period over the course of the K2 observations, but the phase of the spin cycle is correlated with the system brightness. We also find the amplitude of the beat signal is correlated with the system brightness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا