ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Field Pauli-Limiting Behavior and Strongly Enhanced Upper Critical Magnetic Fields near the Transition Temperature of an Arsenic-Deficient LaO_0.9F_0.1FeAs_(1-delta) Superconductor

146   0   0.0 ( 0 )
 نشر من قبل S. -L. Drechsler
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report upper critical field B_c2(T) data for disordered (arsenic-deficient) LaO_0.9F_0.1FeAs_(1-delta) in a wide temperature and magnetic field range up to 47 T. Because of the large linear slope of Bc2 about -5.4 T/K to -6.6 T/K near Tc = 28.5 K the T-dependence of the in-plane Bc2(T) shows a flattening near 23 K above 30 T which points to Pauli-limited behavior with Bc2(0) about 63-68 T. Our results are discussed in terms of disorder effects within conventional and unconventional superconducting pairings.



قيم البحث

اقرأ أيضاً

We report resistivity and upper critical field B_c2(T) data for As deficient LaO_(0.9)F_(0.1)FeAs_(1-delta) in a wide temperature and high field range up to 60 T. These disordered samples exhibit a slightly enhanced superconducting transition at T_c = 29 K and a significantly enlarged slope dB_(c2))/dT = -5.4 T/K near T_c which contrasts with a flattening of B_(c2)(T) starting near 23 K above 30 T. This flattening is interpreted as Pauli limiting behaviour (PLB) with B_(c2)(0) approx 63 T. We compare our results with B_(c2)(T)-data reported in the literature for clean and disordered samples. Whereas clean samples show no PLB for fields below 60 to 70 T, the hitherto unexplained flattening of B_(c2)(T) for applied fields H || ab observed for several disordered closely related systems is interpreted also as a manifestation of PLB. Consequences of our results are discussed in terms of disorder effects within the frame of conventional and unconventional superconductivity.
We report magnetization measurements of As-deficient LaO_0.9F_0.1FeAs_1-delta (delta about 0.06) samples with improved superconducting properties as compared with As-stoichiometric optimally doped La-1111 samples. In this As-deficient system with alm ost homogeneously distributed As-vacancies (AV), as suggested by the (75)As-nuclear quadrupole resonance (NQR) measurements,we observe a strong enhancement of the spin-susceptibility by a factor of 3-7. This observation is attributed to the presence of an electronically localized state around each AV, carrying a magnetic moment of about 3.2 mu_Bohr per AV or 0.8 mu_Bohr/Fe atom. From theoretical considerations we find that the formation of a local moment on neighboring iron sites of an AV sets in when the local Coulomb interaction exceeds a critical value of about 1.0 eV in the dilute limit. Its estimated value amounts to ~ 2.5 eV and implies an upper bound of ~ 2 eV for the Coulomb repulsion at Fe sites beyond the first neighbor-shell of an AV. Electronic correlations are thus moderate/weak in doped La-1111. The strongly enhanced spin susceptibility is responsible for the Pauli limiting behavior of the superconductivity that we observe in As-deficient LaO_0.9F_0.1FeAs_1-delta. In contrast, no Pauli limiting behavior is found for the optimally doped, As-stoichiometric LaO_0.9F_0.1FeAs superconductor in accord with its low spin susceptibility.
We report resistivity and upper critical field B_c2(T) data for disordered (As deficient) LaO_0.9F_0.1FeAs_1-delta in a wide temperature and high field range up to 60 T. These samples exhibit a slightly enhanced superconducting transition at T_c = 28 .5 K and a significantly enlarged slope dB_c2/dT = -5.4 T/K near T_c which contrasts with a flattening of B_c2(T) starting near 23 K above 30 T. The latter evidences Pauli limiting behaviour (PLB) with B_c2(0) approximately 63 T. We compare our results with B_c2(T)-data from the literature for clean and disordered samples. Whereas clean samples show almost no PLB for fields below 60 to 70 T, the hitherto unexplained pronounced flattening of B_c2(T) for applied fields H II ab observed for several disordered closely related systems is interpreted also as a manifestation of PLB. Consequences are discussed in terms of disorder effects within the frames of (un)conventional superconductivity, respectively.
We present the first study of codoped iron-arsenide superconductors of the 122 family (Sr/Ba)_(1-x)K_xFe_(2-y)Co_yAs_2 with the purpose to increase the upper critical field H_c2 compared to single doped (Sr/Ba)Fe_2As_2 materials. H_c2 was investigate d by measuring the magnetoresistance in high pulsed magnetic fields up to 64 T. We find, that H_c2 extrapolated to T = 0 is indeed enhanced significantly to ~ 90 T for polycrystalline samples of Ba_0.55K_0.45Fe_1.95Co_0.05As_2 compared to ~75 T for Ba_0.55K_0.45Fe_2As_2 and BaFe_1.8Co_0.2As_2 single crystals. Codoping thus is a promising way for the systematic optimization of iron-arsenic based superconductors for magnetic-field and high-current applications.
We studied the specific heat and thermal conductivity of the spin-triplet superconductor Sr2RuO4 at low temperatures and under oriented magnetic fields H. We resolved a double peak structure of the superconducting transition under magnetic field for the first time, which provides thermodynamic evidence for the existence of multiple superconducting phases. We also found a clear limiting of the upper critical field Hc2 for the field direction parallel to the RuO2 plane only within 2 degrees. The limiting of Hc2 occurs in the same H-T domain of the second superconducting phase; we suggest that the two phenomena have the same physical origin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا