ﻻ يوجد ملخص باللغة العربية
We present the FP420 R&D project, which has been studying the key aspects of the development and installation of a silicon tracker and fast-timing detectors in the LHC tunnel at 420 m from the interaction points of the ATLAS and CMS experiments. These detectors would measure precisely very forward protons in conjunction with the corresponding central detectors as a means to study Standard Model (SM) physics, and to search for and characterise New Physics signals. This report includes a detailed description of the physics case for the detector and, in particular, for the measurement of Central Exclusive Production, pp --> p + phi + p, in which the outgoing protons remain intact and the central system phi may be a single particle such as a SM or MSSM Higgs boson. Other physics topics discussed are gamma-gamma and gamma-p interactions, and diffractive processes. The report includes a detailed study of the trigger strategy, acceptance, reconstruction efficiencies, and expected yields for a particular p p --> p H p measurement with Higgs boson decay in the b-bbar mode. The document also describes the detector acceptance as given by the LHC beam optics between the interaction points and the FP420 location, the machine backgrounds, the new proposed connection cryostat and the moving (Hamburg) beam-pipe at 420 m, and the radio-frequency impact of the design on the LHC. The last part of the document is devoted to a description of the 3D silicon sensors and associated tracking performances, the design of two fast-timing detectors capable of accurate vertex reconstruction for background rejection at high-luminosities, and the detector alignment and calibration strategy.
A rapidity gap program with great potential can be realized at the Large Hadron Collider, LHC, by adding a few simple forward shower counters (FSCs) along the beam line on both sides of the main central detectors, such as CMS. Measurements of single
We outline the opportunities for spin physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton LHC beam extracted by a bent crystal. In particular, we focus on the study of single transverse spin asymetries with the polarisation of the target.
We report on the opportunities for spin physics and Transverse-Momentum Dependent distribution (TMD) studies at a future multi-purpose fixed-target experiment using the proton or lead ion LHC beams extracted by a bent crystal. The LHC multi-TeV beams
The TOTEM experiment with its detectors in the forward region of CMS and the Roman Pots along the beam line will determine the total pp cross-section via the optical theorem by measuring both the elastic cross-section and the total inelastic rate. TO
The papers review the main theoretical and experimental aspects of the Forward Physics at the Large Hadron Collider.