ﻻ يوجد ملخص باللغة العربية
We have carried out a search for the 2.14 micron spectroscopic signature of the close orbiting extrasolar giant planet, HD 179949b. High cadence time series spectra were obtained with the CRIRES spectrograph at VLT1 on two closely separated nights. Deconvolution yielded spectroscopic profiles with mean S/N ratios of several thousand, enabling the near infrared contrast ratios predicted for the HD 179949 system to be achieved. Recent models have predicted that the hottest planets may exhibit spectral signatures in emission due to the presence of TiO and VO which may be responsible for a temperature inversion high in the atmosphere. We have used our phase dependent orbital model and tomographic techniques to search for the planetary signature under the assumption of an absorption line dominated atmospheric spectrum, where T and V are depleted from the atmospheric model, and an emission line dominated spectrum, where TiO and VO are present. We do not detect a planet in either case, but the 2.120 - 2.174 micron wavelength region covered by our observations enables the deepest near infrared limits yet to be placed on the planet/star contrast ratio of any close orbiting extrasolar giant planet system. We are able to rule out the presence of an atmosphere dominated by absorption opacities in the case of HD 179949b at a contrast ratio of F_p/F_* ~ 1/3350, with 99 per cent confidence.
We present new, high-precision Doppler radial velocity (RV) data sets for the nearby K3V star HD 219134. The data include 175 velocities obtained with the HIRES Spectrograph at the Keck I Telescope, and 101 velocities obtained with the Levy Spectrogr
We present a search for the near infrared spectroscopic signature of the close orbiting extrasolar giant planet HD 75289b. We obtained ~230 spectra in the wavelength range 2.18 - 2.19 microns using the Phoenix spectrograph at Gemini South. By conside
We report the detection of two new planets orbiting the K giants HD 86950 and HD 222076, based on precise radial velocities obtained with three instruments: AAT/UCLES, FEROS, and CHIRON. HD 86950b has a period of 1270$pm$57 days at $a=2.72pm$0.08 AU,
We show that the very close-by (19 pc) K0 star HD 189733, already found to be orbited by a transiting giant planet, is the primary of a double-star system, with the secondary being a mid-M dwarf with projected separation of about 216 AU from the prim
We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters f