ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective Interacting Hamiltonian and Pairing Symmetry of LaOFeAs

147   0   0.0 ( 0 )
 نشر من قبل Junren Shi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Junren Shi




اسأل ChatGPT حول البحث

We establish the general form of effective interacting Hamiltonian for LaOFeAs system based on the symmetry consideration. The peculiar symmetry property of the electron states yields unusual form of electron-electron interaction. Based on the general effective Hamiltonian, we determine all the ten possible pairing states. More physical considerations would further reduce the list of the candidates for the pairing state.

قيم البحث

اقرأ أيضاً

Recent experimental results indicate that superconductivity in Sr2RuO4 is described by the p-wave E_u representation of the D_{4h} point group. Results on the vortex lattice structures for this representation are presented. The theoretical results are compared with experiment.
In iron selenide superconductors only electron-like Fermi pockets survive, challenging the $S^{pm}$ pairing based on the quasi-nesting between the electron and hole Fermi pockets (as in iron arsenides). By functional renormalization group study we sh ow that an in-phase $S$-wave pairing on the electron pockets ($S^{++}_{ee}$) is realized. The pairing mechanism involves two competing driving forces: The strong C-type spin fluctuations cause attractive pair scattering between and within electron pockets via Cooperon excitations on the virtual hole pockets, while the G-type spin fluctuations cause repulsive pair scattering. The latter effect is however weakened by the hybridization splitting of the electron pockets. The resulting $S^{++}_{ee}$-wave pairing symmetry is consistent with experiments. We further propose that the quasiparticle interference pattern in scanning tunneling microscopy and the Andreev reflection in out-of-plane contact tunneling are efficient probes of in-phase versus anti-phase $S$-wave pairing on the electron pockets.
345 - A.V. Chubukov , D. Efremov , 2008
We analyze antiferromagnetism and superconductivity in novel $Fe-$based superconductors within the itinerant model of small electron and hole pockets near $(0,0)$ and $(pi,pi)$. We argue that the effective interactions in both channels logarithmicall y flow towards the same values at low energies, {it i.e.}, antiferromagnetism and superconductivity must be treated on equal footings. The magnetic instability comes first for equal sizes of the two pockets, but looses to superconductivity upon doping. The superconducting gap has no nodes, but changes sign between the two Fermi surfaces (extended s-wave symmetry). We argue that the $T$ dependencies of the spin susceptibility and NMR relaxation rate for such state are exponential only at very low $T$, and can be well fitted by power-laws over a wide $T$ range below $T_c$.
181 - P. Zhang , J. Ma , T. Qian 2016
We performed a comprehensive angle-resolved photoemission spectroscopy study of the electronic band structure of LaOFeAs single crystals. We found that samples cleaved at low temperature show an unstable and highly complicated band structure, whereas samples cleaved at high temperature exhibit a stable and clearer electronic structure. Using emph{in-situ} surface doping with K and supported by first-principles calculations, we identify both surface and bulk bands. Our assignments are confirmed by the difference in the temperature dependence of the bulk and surface states.
The pairing mechanism in iron-based superconductors is the subject of ongoing debate. Proximity to an antiferromagnetic phase suggests that pairing is mediated by spin fluctuations, but orbital fluctuations have also been invoked. The former typicall y favour a pairing state of extended s-wave symmetry with a gap that changes sign between electron and hole Fermi surfaces (s+-), while the latter yield a standard s-wave state without sign change (s++). Here we show that applying pressure to KFe2As2 induces a change of pairing state. The critical temperature Tc decreases with pressure initially, and then suddenly increases, above a critical pressure Pc. The constancy of the Hall coefficient through Pc rules out a change in the Fermi surface. There is compelling evidence that the pairing state below Pc is d-wave, from bulk measurements at ambient pressure. Above Pc, the high sensitivity to disorder argues for a particular kind of s+- state. The change from d-wave to s-wave is likely to proceed via an unusual s + id state that breaks time-reversal symmetry. The proximity of two distinct pairing states found here experimentally is natural given the near degeneracy of d-wave and s+- states found theoretically. These findings make a compelling case for spin-fluctuation-mediated superconductivity in this key iron-arsenide material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا