ترغب بنشر مسار تعليمي؟ اضغط هنا

Nitrogen abundances in giant stars of the globular cluster NGC 6752

94   0   0.0 ( 0 )
 نشر من قبل David Yong
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David Yong




اسأل ChatGPT حول البحث

We present N abundances for 21 bright giants in the globular cluster NGC 6752 based on high-resolution UVES spectra of the 3360A NH lines. We confirm that the Stromgren c1 index traces the N abundance and find that the star-to-star N abundance variation is 1.95 dex, at the samples luminosity. We find statistically significant correlations, but small amplitude variations, between the abundances of N and alpha-, Fe-peak, and s-process elements. Analyses using model atmospheres with appropriate N, O, Na, and Al abundances would strengthen, rather than mute, these correlations. If the small variations of heavy elements are real, then the synthesis of the N anomalies must take place in stars which also synthesize alpha-, Fe-peak, and s-process elements. These correlations offer support for contributions from both AGB and massive stars to the globular cluster abundance anomalies.

قيم البحث

اقرأ أيضاً

70 - David Yong 2005
We present measurements of the neutron-capture elements Rb and Pb in five giant stars of the globular cluster NGC 6752 and Pb measurements in four giants of the globular cluster M 13. The abundances were derived by comparing synthetic spectra with hi gh resolution, high signal-to-noise ratio spectra obtained using HDS on the Subaru telescope and MIKE on the Magellan telescope. The program stars span the range of the O-Al abundance variation. In NGC 6752, the mean abundances are [Rb/Fe] = -0.17 +/- 0.06 (sigma = 0.14), [Rb/Zr] = -0.12 +/- 0.06 (sigma = 0.13), and [Pb/Fe] = -0.17 +/- 0.04 (sigma = 0.08). In M 13 the mean abundance is [Pb/Fe] = -0.28 +/- 0.03 (sigma = 0.06). Within the measurement uncertainties, we find no evidence for a star-to-star variation for either Rb or Pb within these clusters. None of the abundance ratios [Rb/Fe], [Rb/Zr], or [Pb/Fe] are correlated with the Al abundance. NGC 6752 may have slightly lower abundances of [Rb/Fe] and [Rb/Zr] compared to the small sample of field stars at the same metallicity. For M 13 and NGC 6752 the Pb abundances are in accord with predictions from a Galactic chemical evolution model. If metal-poor intermediate-mass asymptotic giant branch stars did produce the globular cluster abundance anomalies, then such stars do not synthesize significant quantities of Rb or Pb. Alternatively, if such stars do synthesize large amounts of Rb or Pb, then they are not responsible for the abundance anomalies seen in globular clusters.
We describe the status of a project whose main goal is to detect variability along the extreme horizontal branch of the globular cluster NGC 6752. Based on Magellan 6.5m data, preliminary light curves are presented for some candidate variables. By co mbining our time-series data, we also produce a deep CMD of unprecedented quality for the cluster which reveals a remarkable lack of main sequence binaries, possibly pointing to a low primordial binary fraction.
214 - V. Kravtsov 2011
We investigate the new and still poorly studied matter of so-called multiple stellar populations (MSPs) in Galactic globular clusters (GGCs). Studying MSPs and their accumulated data can shed more light on the formation and evolution of GGCs and othe r closely related fundamental problems. We focus on the strong relation between the radial distribution of evolutionary homogeneous stars and their U-based photometric characteristics in the nearby GGC NGC 6752 and compare this with a similar relation we found in NGC 3201 and NGC 1261. We use our new multi-color photometry in a fairly wide field of NGC 6752, with particular emphasis on the U band and our recent and already published photometry made in NGC 3201 and NGC 1261. We found and report here for the first time a strong difference in the radial distribution between the sub-populations of red giant branch (RGB) stars that are bluer and redder in color U-B, as well as between sub-giant branch (SGB) stars brighter and fainter in the U-magnitude in NGC 6752. Moreover, the fainter SGB and redder RGB stars are similarly much more centrally concentrated than their respective brighter and bluer counterparts. Virtually the same applies to NGC 3201. We find evidence in NGC 6752 as in NGC 3201 that a dramatic change in the proportion of the two sub-populations of SGB and RGB stars occurs at a radial distance close to the half-mass radius, R_h, of the cluster. These results are the first detections of the radial trend of the particular photometric properties of stellar populations in GGCs. They imply a radial dependence of the main characteristics of the stellar populations in these GGCs, primarily of the abundance, and (indirectly) presumably of the kinematics.
329 - Jennifer Simmerer 2003
We derive [Cu/Fe] for 117 giant stars in ten globular clusters (M3, M4, M5, M10, M13, M15, M71, NGC 7006, NCG 288, and NGC 362) and find that globular cluster Cu abundances appear to follow [Cu/Fe] trends found in the field. This result is interestin g in light of recent work which indicates that the globular cluster Omega Centauri shows no trend in [Cu/Fe] with [Fe/H] over the abundance range -2.0 <[Fe/H]< -0.8. Of particular interest are the two clusters M4 and M5. While at a similar metallicity ([Fe/H] ~- 1.2), they differ greatly in some elemental abundances: M4 is largely overabundant in Si, Ba, and La compared to M5. We find that it is also overabundant in Cu with respect to M5, though this overabundance is in accord with [Cu/Fe] ratios found in the field.
134 - Arthur A. Puls 2018
The metal-rich Galactic globular cluster NGC 6366 is the fifth closest to the Sun. Despite its interest, it has received scarce attention, and little is known about its internal structure. Its kinematics suggests a link to the halo, but its metallici ty indicates otherwise. We present a detailed chemical analysis of eight giant stars of NGC 6366, using high resolution and high quality spectra (R > 40000, S/N > 60) obtained at the VLT (8.2 m) and CFHT (3.6 m) telescopes. We attempted to characterize its chemistry and to search for evidence of multiple stellar populations. The atmospheric parameters were derived using the method of excitation and ionization equilibrium of FeI and FeII lines and from those atmospheric parameters we calculated the abundances for other elements and found that none of the elements measured presents star-to-star variation greater than the uncertainties. We compared the derived abundances with those of other globular clusters and field stars available in the literature. We determined a mean [Fe/H] = -0.60 +- 0.03 for NGC 6366 and found some similarity of this object with M 71, another inner halo globular cluster. The Na-O anticorrelation extension is short and no star-to-star variation in Al is found. The presence of second generation stars is not evident in NGC 6366.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا