ترغب بنشر مسار تعليمي؟ اضغط هنا

The Rosette Eye: the key transition phase in the birth of a massive star

66   0   0.0 ( 0 )
 نشر من قبل Jinzeng Li
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive protostars dramatically influence their surroundings via accretion-induced outflows and intense radiation fields. They evolve rapidly, the disk and infalling envelope being evaporated and dissipated in $sim$ 10$^5$ years. Consequently, they are very rare and investigating this important phase of early stellar evolution is extremely difficult. Here we present the discovery of a key transient phase in the emergence of a massive young star, in which ultraviolet radiation from the new-born giant has just punctured through its natal core. The massive young stellar object AFGL 961 II is readily resolved in the near infrared. Its morphology closely resembles a cats eye and is here dubbed as the Rosette Eye. Emerging ionized flows blow out an hourglass shaped nebula, which, along with the existence of strong near-infrared excess, suggests the existence of an accretion disk in the perpendicular direction. The lobes of the hourglass, however, are capped with arcs of static H$_{2}$ emission produced by fluorescence. This study has strong implications for our understanding of how massive stars embark on their formation.


قيم البحث

اقرأ أيضاً

We study the formation of massive Population III binary stars using a newly developed radiation hydrodynamics code with the adaptive mesh refinement and adaptive ray-tracing methods. We follow the evolution of a typical primordial star-forming cloud obtained from a cosmological hydrodynamics simulation. Several protostars form as a result of disk fragmentation and grow in mass by the gas accretion, which is finally quenched by the radiation feedback from the protostars. Our code enables us, for the first time, to consider the feedback by both the ionizing and dissociating radiation from the multiple protostars, which is essential for self-consistently determining their final masses. At the final step of the simulation, we observe a very wide ($gtrsim 10^4,mathrm{au}$) binary stellar system consisting of $60$ and $70,M_odot$ stars. One of the member stars also has two smaller mass ($10,M_odot$) companion stars orbiting at $200$ and $800,mathrm{au}$, making up a mini-triplet system. Our results suggest that massive binary or multiple systems are common among Population III stars.
The current census of, and stellar population in, massive Galactic star clusters is reviewed. In particular, we concentrate on a recent survey of obscured Galactic Giant H II (GHII) regions and the associated stellar clusters embedded in them. The re gions have been selected as the most luminous radio continuum sources, and as such the stellar clusters appear to be among the youngest massive clusters in the Galaxy. The emergent stellar populations are further studied through near infrared spectroscopy of the brighter members. We also discuss the massive stellar clusters within 50 pc of the Galactic center (GC), comparing their known properties to those found in the GHII region survey. It is suggested that the somewhat younger clusters associated with the GHII regions are more suited to measuring the initial mass function in massive star clusters. Narrow band images in the central pc of the GC are presented which identify the young stellar sequence associated with the evolved He I emission line stars.
The Rosette Complex in the constellation of Monoceros is a magnificent laboratory for the study of star formation. The region presents an interesting scenario, in which an expanding HII region generated by the large OB association NGC 2244 is interac ting with a giant molecular cloud. Inside the cloud a number of stellar clusters have formed recently. In this chapter we present a review of past and present research on the region, and discuss investigations relevant to the physics of the nebula and the molecular cloud. We also review recent work on the younger embedded clusters and individual nebulous objects located across this important star forming region.
112 - Shuo Kong 2017
We present high resolution (0.2, 1000 AU) 1.3 mm ALMA observations of massive infrared dark cloud clump, G028.37+00.07-C1, thought to harbor the early stages of massive star formation. Using $rm N_2D^+$(3-2) we resolve the previously identified C1-S core, separating the bulk of its emission from two nearby protostellar sources. C1-S is thus identified as a massive ($sim50:M_odot$), compact ($sim0.1:$pc diameter) starless core, e.g., with no signs of outflow activity. Being highly deuterated, this is a promising candidate for a pre-stellar core on the verge of collapse. An analysis of its dynamical state indicates a sub-virial velocity dispersion compared to a trans-Alfvenic turbulent core model. However, virial equilibrium could be achieved with sub-Alfvenic conditions involving $sim2:$mG magnetic field strengths.
Using Spitzer Space Telescope and Chandra X-ray Observatory data, we identify YSOs in the Rosette Molecular Cloud (RMC). By being able to select cluster members and classify them into YSO types, we are able to track the progression of star formation locally within the cluster environments and globally within the cloud. We employ nearest neighbor method (NNM) analysis to explore the density structure of the clusters and YSO ratio mapping to study age progressions in the cloud. We find a relationship between the YSO ratios and extinction which suggests star formation occurs preferentially in the densest parts of the cloud and that the column density of gas rapidly decreases as the region evolves. This suggests rapid removal of gas may account for the low star formation efficiencies observed in molecular clouds. We find that the overall age spread across the RMC is small. Our analysis suggests that star formation started throughout the complex around the same time. Age gradients in the cloud appear to be localized and any effect the HII region has on the star formation history is secondary to that of the primordial collapse of the cloud.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا