ﻻ يوجد ملخص باللغة العربية
We generalise the computations of arXiv:0712.2456 to generate long wavelength, asymptotically locally AdS_5 solutions to the Einstein-dilaton system with a slowly varying boundary dilaton field and a weakly curved boundary metric. Upon demanding regularity, our solutions are dual, under the AdS/CFT correspondence, to arbitrary fluid flows in the boundary theory formulated on a weakly curved manifold with a prescribed slowly varying coupling constant. These solutions turn out to be parametrised by four-velocity and temperature fields that are constrained to obey the boundary covariant Navier Stokes equations with a dilaton dependent forcing term. We explicitly evaluate the stress tensor and Lagrangian as a function of the velocity, temperature, coupling constant and curvature fields, to second order in the derivative expansion and demonstrate the Weyl covariance of these expressions. We also construct the event horizon of the dual solutions to second order in the derivative expansion, and use the area form on this event horizon to construct an entropy current for the dual fluid. As a check of our constructions we expand the exactly known solutions for rotating black holes in global AdS_5 in a boundary derivative expansion and find perfect agreement with all our results upto second order. We also find other simple solutions of the forced fluid mechanics equations and discuss their bulk interpretation. Our results may aid in determining a bulk dual to forced flows exhibiting steady state turbulence.
We generalize recent work to construct a map from the conformal Navier Stokes equations with holographically determined transport coefficients, in d spacetime dimensions, to the set of asymptotically locally AdS_{d+1} long wavelength solutions of Ein
Black branes in AdS5 appear in a four parameter family labeled by their velocity and temperature. Promoting these parameters to Goldstone modes or collective coordinate fields -- arbitrary functions of the coordinates on the boundary of AdS5 -- we us
Spacetime geometries dual to arbitrary fluid flows in strongly coupled N=4 super Yang Mills theory have recently been constructed perturbatively in the long wavelength limit. We demonstrate that these geometries all have regular event horizons, and d
We derive the equations of second order dissipative fluid dynamics from the relativistic Boltzmann equation following the method of W. Israel and J. M. Stewart. We present a frame independent calculation of all first- and second-order terms and their
We reconstruct the complete fermionic orbit of the non-extremal BTZ black hole by acting with finite supersymmetry transformations. The solution satisfies the exact supergravity equations of motion to all orders in the fermonic expansion and the fina