We study the impact of transverse-momentum dependent parton distributions on detailed features of multi-jet final states, focusing on angular jet correlations in DIS data.
We investigate the relations between transverse momentum dependent parton distributions (TMDs) and generalized parton distributions (GPDs) in a light-front quark-diquark model motivated by soft wall AdS/QCD. Many relations are found to have similar s
tructure in different models. It is found that a relation between the Sivers function and the GPD $E_q$ can be obtained in this model in terms of a lensing function. The quark orbital angular momentum is calculated and the results are compared with the results in other similar models. Implications of the results are discussed. Relations among different TMDs in the model are also presented.
We present the extraction of unpolarized quark transverse momentum dependent parton distribution functions (TMDPDFs) and the non-perturbative part of TMD evolution kernel from the global analysis of Drell-Yan and $Z$-boson production data. The analys
is is performed at the next-to-next-to-leading order (NNLO) in perturbative QCD, using the $zeta$-prescription. The estimation of the error-propagation from the experimental uncertainties to non-perturbative function is made by the replica method. The importance of the inclusion of the precise LHC data and its influence on the determination of non-perturbative functions is discussed.
Transverse-momentum-dependent distributions (TMDs) are central in high-energy physics from both theoretical and phenomenological points of view. In this manual we introduce the library, TMDlib, of fits and parameterisations for transverse-momentum-de
pendent parton distribution functions (TMD PDFs) and fragmentation functions (TMD FFs) together with an online plotting tool, TMDplotter. We provide a description of the program components and of the different physical frameworks the user can access via the available parameterisations.
We review the information on the spin and orbital angular momentum structure of the nucleon encoded in the T-even transverse momentum dependent parton distributions within light-cone quark models. Model results for azimuthal spin asymmetries in semi-
inclusive lepton-nucleon deep-inelastic scattering are discussed, showing a good agreement with available experimental data and providing predictions to be further tested by future CLAS, COMPASS and HERMES data.
We present an extraction of unpolarised Transverse-Momentum-Dependent Parton Distribution Functions based on Drell-Yan production data from different experiments, including those at the LHC, and spanning a wide kinematic range. We deal with experimen
tal uncertainties by properly taking into account correlations. We include resummation of logarithms of the transverse momentum of the vector boson up to N$^3$LL order, and we include non-perturbative contributions. These ingredients allow us to obtain a remarkable agreement with the data.