ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-particle Azimuthal Correlations of High-pT Charged Hadrons at the CERN SPS

119   0   0.0 ( 0 )
 نشر من قبل Marek Szuba
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Marek Szuba




اسأل ChatGPT حول البحث

Two-particle azimuthal correlations of high-pT hadrons can serve as a probe of interactions of partons with the dense medium produced in high-energy heavy-ion collisions. First NA49 results on such correlations are presented for central and mid-central Pb+Pb collisions at 158A GeV beam energy, for different centrality bins and charge combinations of trigger and associate particles. These results feature a flattened away-side peak in the most central collisions, which is consistent with expectations of the medium-interaction scenario. A comparison with CERES Pb+Au results at the same energy, as well as with PHENIX Au+Au results at the top RHIC energy, is provided.



قيم البحث

اقرأ أيضاً

Results on two-particle $DeltaetaDeltaphi$ correlations in inelastic p+p interactions at 20, 31, 40, 80, and 158~GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton S ynchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the EPOS and UrQMD models.
A measurement of charged hadron pair correlations in two-dimensional $DeltaetaDeltaphi$ space is presented. The analysis is based on total 30 million central Be+Be collisions observed in the NA61/SHINE detector at the CERN SPS for incident beam momen ta of 19$A$, 30$A$, 40$A$, 75$A$, and 150$A$ GeV/$c$. Measurements were carried out for unlike-sign and like-sign charge hadron pairs independently. The $C(Deltaeta,Deltaphi)$ correlation functions were compared with results from a similar analysis on p+p interactions at similar beam momenta per nucleon. General trends of the back-to-back correlations are similar in central Be+Be collisions and p+p interactions, but are suppressed in magnitude due to the increased combinatorial background. Predictions from the EPOS and UrQMD models are compared to the measurements. Evolution of an enhancement around $(Deltaeta,Deltaphi) = (0,0)$ with incident energy is observed in central Be+Be collisions. It is not predicted by both models and almost non-existing in proton-proton collisions at the same momentum per nucleon.
We present measurements of three-particle correlations for various harmonics in Au+Au collisions at energies ranging from $sqrt{s_{{rm NN}}}=7.7$ to 200 GeV using the STAR detector. The quantity $langlecos(mphi_1+nphi_2-(m+n)phi_3)rangle$ is evaluate d as a function of $sqrt{s_{{rm NN}}}$, collision centrality, transverse momentum, $p_T$, pseudo-rapidity difference, $Deltaeta$, and harmonics ($m$ and $n$). These data provide detailed information on global event properties like the three-dimensional structure of the initial overlap region, the expansion dynamics of the matter produced in the collisions, and the transport properties of the medium. A strong dependence on $Deltaeta$ is observed for most harmonic combinations consistent with breaking of longitudinal boost invariance. Data reveal changes with energy in the two-particle correlation functions relative to the second-harmonic event-plane and provide ways to constrain models of heavy-ion collisions over a wide range of collision energies.
Two particle azimuthal correlations are studied in 4.2A GeV C+Ta collisions observed with the 2-m propane bubble chamber exposed at JINR Dubna Synchrophasotron. The correlations are analyzed both for protons and negative pions, and their dependence o n the collision centrality, rapidity and rapidity difference is investigated. It is found that protons show a weak back-to-back correlations, while a side-by-side correlations are observed for negative pions. Restricting both protons to the target or projectile fragmentation region, the side-by-side correlations are observed for protons also. Using the two particle correlation function, the flow analysis is performed and intensity of directed flow is determined without event-by event estimation of the reaction plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا