ترغب بنشر مسار تعليمي؟ اضغط هنا

A Measurement of The Faint Source Correlation Function in the GOODS and UDF Survey

38   0   0.0 ( 0 )
 نشر من قبل Eric Morganson
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a stable procedure for defining and measuring the two point angular autocorrelation function, w, of faint (25 < V < 29), barely resolved and unresolved sources in the HST GOODS and UDF datasets. We construct catalogs that include close pairs and faint detections. We show for the first time that on subarcsecond scales, the correlation function exceeds unity. This correlation function is well fit by a power law with index of 2.5 and a characteristic angular scale that decrease slowly with magnitude. This is very different from the purely gravitationalcorrelation function of brighter galaxies which has a index of 0.7 and a characteristic angular scale which decreases quickly with magnitude. This observed clustering probably reflects the presence of giant star-forming regions within galactic-scale potential wells. Its measurement enables a new approach to measuring the redshift distribution of the faintest sources in the sky.

قيم البحث

اقرأ أيضاً

We present the first results from the deep and wide 5 GHz radio observations of the Great Observatories Origins Deep Survey (GOODS)-North ($sigma=3.5 ; mu Jy ; beam^{-1}$, synthesized beam size $theta =$ 1.47 arcsec $times$ 1.42 arcsec, and 52 source s over 109 arcmin$^{2}$) and GOODS-South ($sigma=3.0 ; mu Jy ; beam^{-1}$, $theta=$0.98 arcsec $times$ 0.45 arcsec, and 88 sources over 190 arcmin$^{2}$) fields using the Karl G. Jansky Very Large Array. We derive radio spectral indices {alpha} between 1.4 and 5 GHz using the beam-matched images and show that the overall spectral index distribution is broad even when the measured noise and flux bias are considered. We also find a clustering of faint radio sources around $alpha=0.8$, but only within $S_{5GHz} < 150 ; mu Jy$. We demonstrate that the correct radio spectral index is important for deriving accurate rest frame radio power and analyzing the radio-FIR correlation, and adopting a single value of $alpha=0.8$ leads to a significant scatter and a strong bias in the analysis of the radio-FIR correlation, resulting from the broad and asymmetric spectral index distribution. When characterized by specific star formation rates, the starburst population (58%) dominates the 5 GHz radio source population, and the quiescent galaxy population (30%) follows a distinct trend in spectral index distribution and the radio-FIR correlation. Lastly, we offer suggestions on sensitivity and angular resolution for future ultra-deep surveys designed to trace the cosmic history of star formation and AGN activity using radio continuum as a probe.
109 - V. Mainieri , P. Rosati , P. Tozzi 2005
We provide important new constraints on the nature and redshift distribution of optically faint (R>25) X-ray sources in the Chandra Deep Field South Survey. We show that we can derive accurate photometric redshifts for the spectroscopically unidentif ied sources thus maximizing the redshift completeness for the whole X-ray sample. Our new redshift distribution for the X-ray source population is in better agreement with that predicted by X-ray background synthesis models; however, we still find an overdensity of low redshift (z<1) sources. The optically faint sources are mainly X-ray absorbed AGN, as determined from direct X-ray spectral analysis and other diagnostics. Many of these optically faint sources have high (>10) X-ray-to-optical flux ratios. We also find that ~71% of them are well fitted with the SED of an early-type galaxy with <z_phot>~1.9 and the remaining 29% with irregular or starburst galaxies mainly at z_phot>3. We estimate that 23% of the optically faint sources are X-ray absorbed QSOs. The overall population of X-ray absorbed QSOs contributes a ~15% fraction of the [2-10] keV X-ray Background (XRB) whereas current XRB synthesis models predict a ~38% contribution.
Exotic phases of matter can emerge from strong correlations in quantum many-body systems. Quantum gas microscopy affords the opportunity to study these correlations with unprecedented detail. Here we report site-resolved observations of antiferromagn etic correlations in a two-dimensional, Hubbard-regime optical lattice and demonstrate the ability to measure the spin-correlation function over any distance. We measure the in-situ distributions of the particle density and magnetic correlations, extract thermodynamic quantities from comparisons to theory, and observe statistically significant correlations over three lattice sites. The temperatures that we reach approach the limits of available numerical simulations. The direct access to many-body physics at the single-particle level demonstrated by our results will further our understanding of how the interplay of motion and magnetism gives rise to new states of matter.
We present a two-pronged approach to the formation of early-type galaxies, using a sample of 18 galaxies at 0.5 < z < 1 from the HST/ACS Ultra Deep Field and GRAPES surveys: 1) We combine slitless low resolution spectroscopy from the GRAPES dataset w ith simple models of galaxy formation to explore their star formation histories. 2) We also perform an analysis of their surface brightness distribution with the unprecedented details provided by the ACS superb angular resolution and photometric depth. Our spectroscopic analysis reveals that their stellar populations are rather homogeneous in age and metallicity and formed at redshifts z ~ 2-5. Evolving them passively, they become practically indistinguishable from ellipticals at z = 0. Also, their isophotal shapes appear very similar to those observed for nearby ellipticals, in that the percentages of disky and boxy galaxies at z ~ 1 are close to the values measured at z = 0. Moreover,we find that the isophotal structure of z ~ 1 early-type galaxies obeys the correlations already observed among nearby ellipticals, i.e. disky ellipticals have generally higher characteristic ellipticities, and boxy ellipticals have larger half-light radii and are brighter in the restframe B band. In this respect then, no significant structural differences are seen for ellipticals between z = 0 and 1.
Stacking cosmic microwave background (CMB) maps around known galaxy clusters and groups provides a powerful probe of the distribution of hot gas in these systems via the Sunyaev-Zeldovich (SZ) effect. A stacking analysis allows one to detect the aver age SZ signal around low mass halos, and to extend measurements out to large scales, which are too faint to detect individually in the SZ or in X-ray emission. In addition, cross correlations between SZ maps and other tracers of large-scale structure (with known redshifts) can be used to extract the redshift-dependence of the SZ background. Motivated by these exciting prospects, we measure the two-point cross-correlation function between a catalog of $sim 380,000$ galaxy groups (with redshifts spanning $z=0.01-0.2$) from the Sloan Digital Sky Survey (SDSS) and Compton-y parameter maps constructed by the Planck collaboration. We find statistically significant correlations between the group catalog and Compton-y maps in each of six separate mass bins, with estimated halo masses in the range $10^{11.5-15.5} M_odot/h$. We compare these measurements with halo models of the SZ signal, which describe the stacked measurement in terms of one-halo and two-halo terms. The one-halo term quantifies the average pressure profile around the groups in a mass bin, while the two-halo term describes the contribution of correlated neighboring halos. For the more massive groups we find clear evidence for the one- and two-halo regimes, while groups with mass below $10^{13} M_odot/h$ are dominated by the two-halo term given the resolution of Planck data. We use the signal in the two-halo regime to determine the bias-weighted electron pressure of the universe: $langle b P_e rangle= 1.50 pm 0.226 times 10^{-7}$ keV cm$^{-3}$ (1-$sigma$) at $zapprox 0.15$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا