ترغب بنشر مسار تعليمي؟ اضغط هنا

Anatomy of luminosity functions: the 2dFGRS example

38   0   0.0 ( 0 )
 نشر من قبل Elmo Tempel
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. We use the 2dF Galaxy Redshift Survey to derive the luminosity function (LF) of the first-ranked (brightest) group/cluster galaxies, the LF of second-ranked, satellite and isolated galaxies, and the LF of groups of galaxies. Methods. We investigate the LFs of different samples in various environments: in voids, filaments, superclusters and supercluster cores. We compare the derived LFs with the Schechter and double-power-law analytical expressions. We also analyze the luminosities of isolated galaxies. Results. We find strong environmental dependency of luminosity functions of all populations. The luminosities of first-ranked galaxies have a lower limit, depending on the global environment (higher in supercluster cores, and absent in voids). The LF of second-ranked galaxies in high-density regions is similar to the LF of first-ranked galaxies in a lower-density environment. The brightest isolated galaxies can be identified with first-ranked galaxies at distances where the remaining galaxies lie outside the observational window used in the survey. Conclusions. The galaxy and cluster LFs can be well approximated by a double-power-law; the widely used Schechter function does not describe well the bright end and the bend of the LFs. Properties of the LFs reflect differences in the evolution of galaxies and their groups in different environments.

قيم البحث

اقرأ أيضاً

We present number counts, luminosity functions (LFs) and luminosity densities of galaxies obtained using the Sloan Digital Sky Survey Sixth Data Release in all SDSS photometric bands. Thanks to the SDSS DR6, galaxy statistics have increased by a fact or of ~9 in the u-band and by a factor of ~4-5 in the rest of the SDSS bands with respect to the previous work of Blanton et al. (2003b). In addition, we have achieved a high redshift completeness in our galaxy samples. Firstly, by making use of the survey masks, provided by the NYU-VAGC DR6, we have been able to define an area on the sky of high angular redshift completeness. Secondly, we guarantee that brightness-dependent redshift incompleteness is small within the magnitude ranges that define our galaxy samples. With these advances, we have estimated very accurate SDSS DR6 LFs in both the bright and the faint end. In the {0.1}^r-band, our SDSS DR6 luminosity function is well fitted by a Schechter LF with parameters Phi_{*}=0.90 +/- 0.07$, M_{*}-5log_{10}h=-20.73 +/- 0.04 and alpha=-1.23 +/- 0.02. As compared with previous results, we find some notable differences. In the bright end of the {0.1}^u-band luminosity function we find a remarkable excess, of ~1.7 dex at M_{{0.1}^u}=-20.5, with respect to the best-fit Schechter LF. This excess weakens in the {0.1}^g-band, fading away towards the very red {0.1}^z-band. A preliminary analysis on the nature of this bright-end bump reveals that it is mostly comprised of active galaxies and QSOs. It seems, therefore, that an important fraction of this exceeding luminosity may come from nuclear activity. In the faint end of the SDSS DR6 luminosity functions, where we can reach 1-1.5 magnitudes deeper than the previous SDSS LF estimation, we obtain a steeper slope [ABRIDGED].
We present infrared luminosity functions and dust mass functions for the EAGLE cosmological simulation, based on synthetic multi-wavelength observations generated with the SKIRT radiative transfer code. In the local Universe, we reproduce the observe d infrared luminosity and dust mass functions very well. Some minor discrepancies are encountered, mainly in the high luminosity regime, where the EAGLE-SKIRT luminosity functions mildly but systematically underestimate the observed ones. The agreement between the EAGLE-SKIRT infrared luminosity functions and the observed ones gradually worsens with increasing lookback time. Fitting modified Schechter functions to the EAGLE-SKIRT luminosity and dust mass functions at different redshifts up to $z=1$, we find that the evolution is compatible with pure luminosity/mass evolution. The evolution is relatively mild: within this redshift range, we find an evolution of $L_{star,250}propto(1+z)^{1.68}$, $L_{star,text{TIR}}propto(1+z)^{2.51}$ and $M_{star,text{dust}}propto(1+z)^{0.83}$ for the characteristic luminosity/mass. For the luminosity/mass density we find $varepsilon_{250}propto(1+z)^{1.62}$, $varepsilon_{text{TIR}}propto(1+z)^{2.35}$ and $rho_{text{dust}}propto(1+z)^{0.80}$, respectively. The mild evolution of the dust mass density is in relatively good agreement with observations, but the slow evolution of the infrared luminosity underestimates the observed luminosity evolution significantly. We argue that these differences can be attributed to increasing limitations in the radiative transfer treatment due to increasingly poorer resolution, combined with a slower than observed evolution of the SFR density in the EAGLE simulation and the lack of AGN emission in our EAGLE-SKIRT post-processing recipe.
An analytical model is developed to study the spectra of electromagnetic dissociation of two-neutron halo nuclei without precise knowledge about initial and final states. Phenomenological three-cluster bound state wave functions, reproducing the most relevant features of these nuclei, are used along with no interaction final states. The 6-He nucleus is considered as a test case, and a good agreement with experimental data concerning the shape of the spectrum and the magnitude of the strength function is found.
Differential 2.2um (K-band) luminosity functions are presented for a complete sample of 1570 nearby Vgsr < 3000 km/s, where Vgsr is the velocity measured with respect to the Galactic standard of rest), bright (K < 10 mag), galaxies segregated by visi ble morphology. The K-band luminosity function for late-type spirals follows a power law that rises towards low luminosities whereas the K-band luminosity functions for ellipticals, lenticulars and bulge-dominated spirals are peaked with a fall off at both high and low luminosities. However, each morphological type (E, S0, S0/a-Sab, Sb-Sbc, Sc-Scd) contributes approximately equally to the overall K-band luminosity density in the local universe, and by inference, the stellar mass density as well.
In order to map the galaxy density field on small scales in the local universe, we use the Nearby Optical Galaxy (NOG) sample, which is currently one of the largest, nearly complete, magnitude-limited ($Bleq$ 14 mag), all-sky sample of nearby optical galaxies ($sim$ 6400 galaxies with cz< 5500 km/s). We have corrected the redshift-dependent distances of these galaxies for non-cosmological motions by means of peculiar velocity field models. Relying on group assignments and on total B magnitudes fully corrected for internal and Galactic extinctions, we determine the total and morphological-type specific luminosity functions for field and grouped galaxies using their locations in real distance space. The related determination of the selection function is meant to be an important step in recovering the galaxy density field on small scales from the NOG sample. Local galaxy density parameters will be used in statistical studies of environmental effects on galaxy properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا