ﻻ يوجد ملخص باللغة العربية
We examine the response of closed-shell nuclei using a correlated interaction, derived with the Unitary Correlation Operator Method (UCOM) from the Argonne V18 potential, in second RPA (SRPA) calculations. The same correlated two-body interaction is used to derive the Hartree-Fock ground state and the SRPA equations. Our results show that the coupling of particle-hole states to higher-order configurations produces sizable effects compared with first-order RPA. A much improved description of the isovector dipole and isoscalar quadrupole resonances is obtained, thanks in part to the more fundamental treatment of the nucleon effective mass offered by SRPA. The present work suggests the prospect of describing giant resonance properties realistically and consistently within extended RPA theories. Self-consistency issues of the present SRPA method and residual three-body effects are pointed out.
Lately we have been tackling the problem of describing nuclear collective excitations starting from correlated realistic nucleon-nucleon (NN) interactions. The latter are constructed within the Unitary Correlation Operator Method (UCOM), starting fro
A finite rank separable approximation for the quasiparticle RPA with Skyrme interactions is applied to study the low lying quadrupole and octupole states in some S isotopes and giant resonances in some spherical nuclei. It is shown that characteristi
This paper starts with a brief historical overview of pairing in nuclei, which fulfills the purpose of properly framing the main subject. This concerns the pairing properties of a realistic shell-model effective interaction which has proved very succ
A finite rank separable approximation for the particle-hole RPA calculations with Skyrme interactions is extended to take into account the pairing. As an illustration of the method energies and transition probabilities for the quadrupole and octupole
A review is presented of the development and current status of nuclear shell-model calculations in which the two-body effective interaction is derived from the free nucleon-nucleon potential. The significant progress made in this field within the las