ﻻ يوجد ملخص باللغة العربية
We identify the correlation in a state of two identical particles as the residual information beyond what is already contained in the 1-particle reduced density matrix, and propose a correlation measure based on the maximum entropy principle. We obtain the analytical results of the correlation measure, which make it computable for arbitrary two-particle states. We also show that the degrees of correlation in the same two-particle states with different particle types will decrease in the following order: bosons, fermions, and distinguishable particles.
Possible definitions for the relative momentum of identical particles are considered.
We probe the theoretical connection among three different approaches to analyze the entanglement of identical particles, i.e., the first quantization language (1QL), elementary-symmetric/exterior products (which has the mathematical equivalence to no
We report novel interference effects in wave packet scattering of identical particles incident on the same side of a resonant barrier, different from those observed in Hong-Ou-Mandel experiments. These include significant changes in the mean number o
Progress in the reliable preparation, coherent propagation and efficient detection of many-body states has recently brought collective quantum phenomena of many identical particles into the spotlight. This tutorial introduces the physics of many-boso
We suggest a formalism to illustrate the entanglement of identical particles in the first quantization language (1QL). Our 1QL formalism enables one to exploit all the well-established quantum information tools to understand the indistinguishable one