ترغب بنشر مسار تعليمي؟ اضغط هنا

Z and W production associated with quark-antiquark pair in k_T-factorization at the LHC

82   0   0.0 ( 0 )
 نشر من قبل Florian Schwennsen
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate and analyze Z and W production in association with quark-antiquark pair in k_T-factorization. Numerical calculations are performed using the Monte Carlo generator CASCADE for proton proton collisions at LHC energy. We compare total and differential cross sections calculated in k_T-factorization approach with total differential cross sections obtained in LO and NLO calculations in collinear factorization approach. We provide strong evidence that some of the effects of the NLO and even higher order collinear calculation are already included in the LO k_T-factorization calculation.

قيم البحث

اقرأ أيضاً

75 - Gang Li , Xue-An Pan , Mao Song 2019
In this work, we investigate the prompt $J/psi$ production in associated with top quark pair to leading order in the nonrelativistic QCD factorization formalism at the LHC with $sqrt{s} =13$ TeV. In addition to the contribution from direct $J/psi$ pr oduction, we also include the indirect contribution from the directly produced heavier charmmonia $chi_{cJ}$ and $psi^prime$. We present the numerical results for the total and differential cross sections and find that the $sideset{^3}{^{(8)}_1}{mathop{{S}}}$ states give the dominant contributions. The prompt $tbar t J/psi$ signatures at the LHC are analyzed in the tetralepton channel $ppto (tto W^+(ell^+ u)b) (bar t to W^-(ell^- bar u)bar b) (J/psitomu^+mu^-)$ and trilepton channel $ppto (tto W(q q^prime)b) ( t to W(ell u) b) (J/psitomu^+mu^-)$, with the $J/psi$ mesons decaying into muon pair, and the top quarks decaying leptonically or hadronically. We find that $tbar t J/psi$ proudction can be potentially detected at the LHC, whose measurement is useful to test the heavy quarkonium production mechanism.
89 - Benjamin Guiot 2018
We discuss the fact that $k_t$-factorization calculations for heavy-quark production include only the $ggrightarrow Qbar{Q}$ contribution. The cases of fixed-flavor-number scheme and variable-flavor-number scheme calculations are analyzed separately. For the latter, we show that, similarly to the collinear factorization, the main contribution is given by the $Qgrightarrow Qg$ process. In this scheme, calculations including only the $gg$ contribution should show a large discrepancy with the data. We show that, if they do not, it is because they include (effectively) a large $K$ factor.
We present total and differential cross sections for W b anti-b and Z b anti-b production at the CERN Large Hadron Collider with a center-of-mass energy of 14 TeV, including Next-to-Leading Order (NLO) QCD corrections and full bottom-quark mass effec ts. We also provide numerical results obtained with a center-of-mass energy of 10 TeV. We study the scale uncertainty of the total cross sections due to the residual renormalization- and factorization-scale dependence of the truncated perturbative series. While in the case of Z b anti-b production the scale uncertainty of the total cross section is reduced by NLO QCD corrections, the W b anti-b production process at NLO in QCD still suffers from large scale uncertainties, in particular in the inclusive case. We also perform a detailed comparison with a calculation that considers massless bottom quarks, as implemented in the Monte Carlo program MCFM. The effects of a non-zero bottom-quark mass (m_b) cannot be neglected in phase-space regions where the relevant kinematic observable, such as the transverse momentum of the bottom quarks or the invariant mass of the bottom-quark pair, are of the order of m_b. The effects on the total production cross sections are usually smaller than the residual scale uncertainty at NLO in QCD.
We present total and differential cross sections for W b anti-b and Z b anti-b production at the CERN Large Hadron Collider including Next-to-Leading Order (NLO) QCD corrections and full bottom-quark mass effects. We discuss the scale uncertainty of the total cross sections due to the residual renormalization- and factorization-scale dependence of the truncated perturbative series. We also discuss b-quark mass effects in kinematic distributions by comparing with a calculation that considers massless bottom quarks, as implemented in the Monte Carlo program MCFM. The effects of a non-zero bottom-quark mass (m_b) cannot be neglected in phase-space regions where the relevant kinematic observable, such as the transverse momentum of the bottom quarks or the invariant mass of the bottom-quark pair, are of the order of m_b. Finally, we present the result of a detailed comparison of NLO QCD predictions for W+b-jet production with one or two jets with Tevatron data.
Pair production of W bosons constitutes an important background to Higgs boson and new physics searches at the Large Hadron Collider LHC. We have calculated the loop-induced gluon-fusion process gg -> W*W* -> leptons, including intermediate light and heavy quarks and allowing for arbitrary invariant masses of the W bosons. While formally of next-to-next-to-leading order, the gg -> W*W* -> leptons process is enhanced by the large gluon flux at the LHC and by experimental Higgs search cuts, and increases the next-to-leading order WW background estimate for Higgs searches by about 30%. We have extended our previous calculation to include the contribution from the intermediate top-bottom massive quark loop and the Higgs signal process. We provide updated results for cross sections and differential distributions and study the interference between the different gluon scattering contributions. We describe important analytical and numerical aspects of our calculation and present the public GG2WW event generator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا