ﻻ يوجد ملخص باللغة العربية
The prediction and prevention of traumatic brain injury is a very important aspect of preventive medical science. This paper proposes a new coupled loading-rate hypothesis for the traumatic brain injury (TBI), which states that the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an impulsive loading that strikes the head in several coupled degrees-of-freedom simultaneously. To show this, based on the previously defined covariant force law, we formulate the coupled Newton-Euler dynamics of brains micro-motions within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brains rapid discontinuous deformations: translational dislocations and rotational disclinations. Brains dislocations and disclinations, caused by the SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum brain model. Keywords: Traumatic brain injuries, coupled loading-rate hypothesis, Euclidean jolt, coupled Newton-Euler dynamics, brains dislocations and disclinations
The prediction and prevention of spinal injury is an important aspect of preventive health science. The spine, or vertebral column, represents a chain of 26 movable vertebral bodies, joint together by transversal viscoelastic intervertebral discs and
Prediction and prevention of musculo-skeletal injuries is an important aspect of preventive health science. Using as an example a human knee joint, this paper proposes a new coupled-loading-rate hypothesis, which states that a generic cause of any mu
Mild traumatic brain injury (mTBI) is a complex syndrome that affects up to 600 per 100,000 individuals, with a particular concentration among military personnel. About half of all mTBI patients experience a diverse array of chronic symptoms which pe
Multiple brain injury criteria (BIC) are developed to quickly quantify brain injury risks after head impacts. These BIC originated from different types of head impacts (e.g., sports and car crashes) are widely used in risk evaluation. However, the ac
The prediction and prevention of traumatic brain injury, spinal injury and general musculo-skeletal injury is a very important aspect of preventive medical science. Recently, in a series of papers, I have proposed a new coupled loading-rate hypothesi