ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of the 3He+alphato 7Be asymp. normalization coefficients (nucl. vertex constants) and their application for extrapolation of the 3He(alpha,gamma)7Be astroph. S-factors to the solar energy region

57   0   0.0 ( 0 )
 نشر من قبل Sayrambay Igamov Dr.
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A new analysis of the precise experimental astrophysical $S$-factors for the direct capture $^3He(alpha,gamma)^7{rm {Be}}$ reaction [B.S. Nara Singh et al., Phys.Rev.Lett. {bf 93} (2004) 262503; D. Bemmerer et al., Phys.Rev.Lett. {bf 97} (2006) 122502; F.Confortola et al., Phys.Rev. {bf C 75} (2007) 065803 and T.A.D.Brown et al., Phys.Rev. {bf C 76} (2007) 055801] populating to the ground and first excited states of $^7{rm Be}$ is carried out based on the modified two - body potential approach in which the direct astrophysical $S$-factor, $S_{34}(E)$, is expressed in terms of the asymptotic normalization constants for $^3{rm {He}}+alphato ^7{rm {Be}}$ and two additional conditions are involved to verify the peripheral character of the reaction under consideration. The Woods--Saxon potential form is used for the bound ($alpha+^3{rm {He}}$)- state and the $^3{rm {He}}alpha$- scattering wave functions. New estimates are obtained for the indirectly measured, values of the asymptotic normalization constants (the nuclear vertex constants) for $^3{rm {He}}+alphato^7{rm {Be}}(g.s.)$ and $^3{rm {He}}+alphato^7{rm {Be}}(0.429 MeV)$ as well as the astrophysical $S$-factors $S_{34}(E)$ at E$le$ 90 keV, including $E$=0. The values of asymptotic normalization constants have been used for getting information about the $alpha$-particle spectroscopic factors for the mirror ($^7Li^7{rm {Be}}$)-pair.

قيم البحث

اقرأ أيضاً

The 3He(alpha,gamma)7Be process is a key reaction in both Big-Bang nucleosynthesis and p-p chain of Hydrogen Burning in Stars. A new measurement of the 3He(alpha,gamma)7Be cross section has been performed at the INFN Gran Sasso underground laboratory by both the activation and the prompt gamma detection methods. The present work reports full details of the prompt gamma detection experiment, focusing on the determination of the systematic uncertainty. The final data, including activation measurements at LUNA, are compared with the results of the last generation experiments and two different theoretical models are used to obtain the S-factor at solar energies.
The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis calculations. The p resent work reports on a new precision experiment using the activation technique at energies directly relevant to big-bang nucleosynthesis. Previously such low energies had been reached experimentally only by the prompt-gamma technique and with inferior precision. Using a windowless gas target, high beam intensity and low background gamma-counting facilities, the 3He(alpha,gamma)7Be cross section has been determined at 127, 148 and 169 keV center-of-mass energy with a total uncertainty of 4%. The sources of systematic uncertainty are discussed in detail. The present data can be used in big-bang nucleosynthesis calculations and to constrain the extrapolation of the 3He(alpha,gamma)7Be astrophysical S-factor to solar energies.
The flux of 7Be and 8B neutrinos from the Sun and the production of 7Li via primordial nucleosynthesis depend on the rate of the 3He(alpha,gamma)7Be reaction. In extension of a previous study showing cross section data at 127 - 167 keV center of mass energy, the present work reports on a measurement of the 3He(alpha,gamma)7Be cross section at 106 keV performed at Italys Gran Sasso underground laboratory by the activation method. This energy is closer to the solar Gamow energy than ever reached before. The result is sigma = 0.567 +- 0.029(stat) +- 0.016(syst) nbarn. The data are compared with previous activation studies at high energy, and a recommended S(0) value for all 3He(alpha,gamma)7Be activation studies, including the present work, is given.
Solar neutrino fluxes depend both on astrophysical and on nuclear physics inputs, namely on the cross sections of the reactions responsible for neutrino production inside the Solar core. While the flux of solar 8B neutrinos has been recently measured at Superkamiokande with a 3.5% uncertainty and a precise measurement of 7Be neutrino flux is foreseen in the next future, the predicted fluxes are still affected by larger errors. The largest nuclear physics uncertainty to determine the fluxes of 8B and 7Be neutrinos comes from the 3He(alpha,gamma)7Be reaction. The uncertainty on its S-factor is due to an average discrepancy in results obtained using two different experimental approaches: the detection of the delayed gamma rays from 7Be decay and the measurement of the prompt gamma emission. Here we report on a new high precision experiment performed with both techniques at the same time. Thanks to the low background conditions of the Gran Sasso LUNA accelerator facility, the cross section has been measured at Ecm = 170, 106 and 93 keV, the latter being the lowest interaction energy ever reached. The S-factors from the two methods do not show any discrepancy within the experimental errors. An extrapolated S(0)= 0.560+/-0.017 keV barn is obtained. Moreover, branching ratios between the two prompt gamma-transitions have been measured with 5-8% accuracy.
Recently, the LUNA collaboration has carried out a high precision measurement on the 3He(alpha,gamma)7Be reaction cross section with both activation and on-line gamma-detection methods at unprecedented low energies. In this paper the results obtained with the activation method are summarized. The results are compared with previous activation experiments and the zero energy extrapolated astrophysical S factor is determined using different theoretical models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا