ﻻ يوجد ملخص باللغة العربية
We present a unique example of giant magnetoelectric effect in a conventional multiferroic HoMnO3, where polarization is very large (~56 mC/m2) and the ferroelectric transition temperature is higher than the magnetic ordering temperature by an order. We attribute the uniqueness of the giant magnetoelectric effect to the ferroelectricity induced entirely by the off-center displacement of rare earth ions with large magnetic moments. This finding suggests a new avenue to design multiferroics with large polarization and higher ferroelectric transition temperature as well as large magnetoelectric effects.
We report $alpha$-Cu$_2$V$_2$O$_7$ to be an improper multiferroic with the simultaneous development of electric polarization and magnetization below $T_C$ = 35 K. The observed spontaneous polarization of magnitude 0.55 $mu$Ccm$^{-2}$ is highest among
Magnetic phase transitions in multiferroic bismuth ferrite (BiFeO3) induced by magnetic field, epitaxial strain, and composition modification are considered. These transitions from a spatially modulated spin spiral state to a homogenous antiferromagn
Given the paucity of single phase multiferroic materials (with large ferromagnetic moment), composite systems seem an attractive solution in the quest to realize magnetoelectric cou-pling between ferromagnetic and ferroelectric order parameters. Desp
We have discovered strong magnetoelectric (ME) effects in the single chiral-helical magnetic state of single-crystalline langasite Ba3NbFe3Si2O14 that is crystallographically chiral. The ferroelectric polarization, predominantly aligned along the a a
We incorporate single crystal Fe$_3$O$_4$ thin films into a gated device structure and demonstrate the ability to control the Verwey transition with static electric fields. The Verwey transition temperature ($T_V$) increases for both polarities of th