ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant Magnetoelectric Effect in a Multiferroic Material with a High Ferroelectric Transition Temperature

130   0   0.0 ( 0 )
 نشر من قبل Namjung Hur
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a unique example of giant magnetoelectric effect in a conventional multiferroic HoMnO3, where polarization is very large (~56 mC/m2) and the ferroelectric transition temperature is higher than the magnetic ordering temperature by an order. We attribute the uniqueness of the giant magnetoelectric effect to the ferroelectricity induced entirely by the off-center displacement of rare earth ions with large magnetic moments. This finding suggests a new avenue to design multiferroics with large polarization and higher ferroelectric transition temperature as well as large magnetoelectric effects.



قيم البحث

اقرأ أيضاً

We report $alpha$-Cu$_2$V$_2$O$_7$ to be an improper multiferroic with the simultaneous development of electric polarization and magnetization below $T_C$ = 35 K. The observed spontaneous polarization of magnitude 0.55 $mu$Ccm$^{-2}$ is highest among the copper based improper multiferroic materials. Our study demonstrates sizable amount of magneto-electric coupling below $T_C$ even with a low magnetic field. The theoretical calculations based on density functional theory (DFT) indicate magnetism in $alpha$-Cu$_2$V$_2$O$_7$ is a consequence of {em ferro-orbital} ordering driven by polar lattice distortion due to the unique pyramidal (CuO$_{5}$) environment of Cu. The spin orbit coupling (SOC) further stabilize orbital ordering and is crucial for magnetism. The calculations indicate that the origin of the giant ferroelectric polarization is primarily due to the symmetric exchange-striction mechanism and is corroborated by temperature dependent X-ray studies.
Magnetic phase transitions in multiferroic bismuth ferrite (BiFeO3) induced by magnetic field, epitaxial strain, and composition modification are considered. These transitions from a spatially modulated spin spiral state to a homogenous antiferromagn etic one are accompanied by the release of latent magnetization and a linear magnetoelectric effect that makes BiFeO3-based materials efficient room-temperature single phase multiferroics.
141 - P. Jain , Q. Wang , M. Roldan 2014
Given the paucity of single phase multiferroic materials (with large ferromagnetic moment), composite systems seem an attractive solution in the quest to realize magnetoelectric cou-pling between ferromagnetic and ferroelectric order parameters. Desp ite having antiferro-magnetic order, BiFeO3 (BFO) has nevertheless been a key material in this quest due to excel-lent ferroelectric properties at room temperature. We studied a superlattice composed of 8 repetitions of 6 unit cells of La0.7Sr0.3MnO3 (LSMO) grown on 5 unit cells of BFO. Significant net uncompensated magnetization in BFO is demonstrated using polarized neutron reflectometry in an insulating superlattice. Remarkably, the magnetization enables magnetic field to change the dielectric properties of the superlattice, which we cite as an example of synthetic magnetoelectric coupling. Importantly, this controlled creation of magnetic moment in BFO suggests a much needed path forward for the design and implementation of integrated oxide devices for next generation magnetoelectric data storage platforms.
350 - Nara Lee , Young Jai Choi , 2014
We have discovered strong magnetoelectric (ME) effects in the single chiral-helical magnetic state of single-crystalline langasite Ba3NbFe3Si2O14 that is crystallographically chiral. The ferroelectric polarization, predominantly aligned along the a a xis below the Neel temperature of ~27 K, changes in a highly non-linear fashion in the presence of in-plane magnetic fields (H) perpendicular to the a axis (H//b*). This ME effect as well as smaller ME effects in other directions exhibit no poling dependence, suggesting the presence of a self-formed single ME domain. In addition, these ME effects accompany no-measurable hysteresis, which is crucial for many technological applications.
We incorporate single crystal Fe$_3$O$_4$ thin films into a gated device structure and demonstrate the ability to control the Verwey transition with static electric fields. The Verwey transition temperature ($T_V$) increases for both polarities of th e electric field, indicating the effect is not driven by changes in carrier concentration. Energetics of induced electric polarization and/or strain within the Fe$_3$O$_4$ film provide a possible explanation for this behavior. Electric field control of the Verwey transition leads directly to a large magnetoelectric effect with coefficient of 585 pT m/V.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا