ترغب بنشر مسار تعليمي؟ اضغط هنا

Smooth analysis of the condition number and the least singular value

69   0   0.0 ( 0 )
 نشر من قبل Terence C. Tao
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $a$ be a complex random variable with mean zero and bounded variance. Let $N_{n}$ be the random matrix of size $n$ whose entries are iid copies of $a$ and $M$ be a fixed matrix of the same size. The goal of this paper is to give a general estimate for the condition number and least singular value of the matrix $M + N_{n}$, generalizing an earlier result of Spielman and Teng for the case when $a$ is gaussian. Our investigation reveals an interesting fact that the core matrix $M$ does play a role on tail bounds for the least singular value of $M+N_{n} $. This does not occur in Spielman-Teng studies when $a$ is gaussian. Consequently, our general estimate involves the norm $|M|$. In the special case when $|M|$ is relatively small, this estimate is nearly optimal and extends or refines existing results.



قيم البحث

اقرأ أيضاً

We show that for an $ntimes n$ random symmetric matrix $A_n$, whose entries on and above the diagonal are independent copies of a sub-Gaussian random variable $xi$ with mean $0$ and variance $1$, [mathbb{P}[s_n(A_n) le epsilon/sqrt{n}] le O_{xi}(epsi lon^{1/8} + exp(-Omega_{xi}(n^{1/2}))) quad text{for all } epsilon ge 0.] This improves a result of Vershynin, who obtained such a bound with $n^{1/2}$ replaced by $n^{c}$ for a small constant $c$, and $1/8$ replaced by $(1/8) + eta$ (with implicit constants also depending on $eta > 0$). Furthermore, when $xi$ is a Rademacher random variable, we prove that [mathbb{P}[s_n(A_n) le epsilon/sqrt{n}] le O(epsilon^{1/8} + exp(-Omega((log{n})^{1/4}n^{1/2}))) quad text{for all } epsilon ge 0.] The special case $epsilon = 0$ improves a recent result of Campos, Mattos, Morris, and Morrison, which showed that $mathbb{P}[s_n(A_n) = 0] le O(exp(-Omega(n^{1/2}))).$ The main innovation in our work are new notions of arithmetic structure -- the Median Regularized Least Common Denominator and the Median Threshold, which we believe should be more generally useful in contexts where one needs to combine anticoncentration information of different parts of a vector.
The (Isogeometric) Finite Cell Method - in which a domain is immersed in a structured background mesh - suffers from conditioning problems when cells with small volume fractions occur. In this contribution, we establish a rigorous scaling relation be tween the condition number of (I)FCM system matrices and the smallest cell volume fraction. Ill-conditioning stems either from basis functions being small on cells with small volume fractions, or from basis functions being nearly linearly dependent on such cells. Based on these two sources of ill-conditioning, an algebraic preconditioning technique is developed, which is referred to as Symmetric Incomplete Permuted Inverse Cholesky (SIPIC). A detailed numerical investigation of the effectivity of the SIPIC preconditioner in improving (I)FCM condition numbers and in improving the convergence speed and accuracy of iterative solvers is presented for the Poisson problem and for two- and three-dimensional problems in linear elasticity, in which Nitches method is applied in either the normal or tangential direction. The accuracy of the preconditioned iterative solver enables mesh convergence studies of the finite cell method.
381 - Michael E. Wall 2002
This chapter describes gene expression analysis by Singular Value Decomposition (SVD), emphasizing initial characterization of the data. We describe SVD methods for visualization of gene expression data, representation of the data using a smaller num ber of variables, and detection of patterns in noisy gene expression data. In addition, we describe the precise relation between SVD analysis and Principal Component Analysis (PCA) when PCA is calculated using the covariance matrix, enabling our descriptions to apply equally well to either method. Our aim is to provide definitions, interpretations, examples, and references that will serve as resources for understanding and extending the application of SVD and PCA to gene expression analysis.
We present an extreme-value analysis of the classical law of the iterated logarithm (LIL) for Brownian motion. Our result can be viewed as a new improvement to the LIL.
In this work we continue our research on nonharmonic analysis of boundary value problems as initiated in our recent paper (IMRN 2016). There, we assumed that the eigenfunctions of the model operator on which the construction is based do not have zero s. In this paper we have weakened this condition extending the applicability of the developed pseudo-differential analysis. Also, we do not assume that the underlying set is bounded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا