ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search for Cosmic Microwave Background Anisotropies on Arcminute Scales with Bolocam

401   0   0.0 ( 0 )
 نشر من قبل Jack Sayers
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have surveyed two science fields totaling one square degree with Bolocam at 2.1 mm to search for secondary CMB anisotropies caused by the Sunyaev- Zeldovich effect (SZE). The fields are in the Lynx and Subaru/XMM SDS1 fields. Our survey is sensitive to angular scales with an effective angular multipole of l_eff = 5700 with FWHM_l = 2800 and has an angular resolution of 60 arcseconds FWHM. Our data provide no evidence for anisotropy. We are able to constrain the level of total astronomical anisotropy, modeled as a flat bandpower in C_l, with frequentist 68%, 90%, and 95% CL upper limits of 590, 760, and 830 uKCMB^2. We statistically subtract the known contribution from primary CMB anisotropy, including cosmic variance, to obtain constraints on the SZE anisotropy contribution. Now including flux calibration uncertainty, our frequentist 68%, 90% and 95% CL upper limits on a flat bandpower in C_l are 690, 960, and 1000 uKCMB^2. When we instead employ the analytic spectrum suggested by Komatsu and Seljak (2002), and account for the non-Gaussianity of the SZE anisotropy signal, we obtain upper limits on the average amplitude of their spectrum weighted by our transfer function of 790, 1060, and 1080 uKCMB^2. We obtain a 90% CL upper limit on sigma8, which normalizes the power spectrum of density fluctuations, of 1.57. These are the first constraints on anisotropy and sigma8 from survey data at these angular scales at frequencies near 150 GHz.



قيم البحث

اقرأ أيضاً

We use a range of cosmological data to constrain phenomenological modifications to general relativity on cosmological scales, through modifications to the Poisson and lensing equations. We include cosmic microwave background anisotropy measurements f rom the Planck satellite, cosmic shear from CFHTLenS and DES-SV, and redshift-space distortions from BOSS data release 12 and the 6dF galaxy survey. We find no evidence of departures from general relativity, with the modified gravity parameters constrained to $Sigma_0 = 0.05^{+0.05}_{-0.07}$ and $mu_0 = -0.10^{+0.20}_{-0.16}$, where $Sigma_0$ and $mu_0$ refer to deviations from general relativity today and are defined to be zero in general relativity. We also forecast the sensitivity to those parameters of the full five-year Dark Energy Survey and of an experiment like the Large Synoptic Survey Telescope, showing a substantial expected improvement in the constraint on $Sigma_0$.
Suggestions have been made that the microwave background observed by COBE and WMAP and dubbed Cosmic Microwave Background (CMB) may have an origin within our own Galaxy or Earth. To consider the signal that may be correlated with Earth, a correlate-b y-eye exercise was attempted by overlaying the CMB map from Wilkinson Microwave Anisotropy Probe on a topographical map of Earth. Remarkably, several hot spots in the CMB map are found to be well aligned with either large cities on Earth or regions of high altitude. To further study the correlations between Earth and CMB, we performed a complicated cross-correlation analysis in the multipole space. The overall correlations are detected at more than 5 sigma confidence level. These results can be naively interpreted to suggest that large angular scale fluctuations in CMB are generated on Earth by a process that traces the altitude relative to a mean radius. Simply extending our analysis, we suggest that cross-correlations between CMB and any other map of a Solar system body, image of a person, or an image of an animal will be detected at some statistical significance. It is unclear how Occams razor can be applied in such a situation to identify which sources are responsible for CMB fluctuations.
The standard inflationary model presents a simple scenario within which the homogeneity, isotropy and flatness of the universe appear as natural outcomes and, in addition, fluctuations in the energy density are originated during the inflationary phas e. These seminal density fluctuations give rise to fluctuations in the temperature of the Cosmic Microwave Background (CMB) at the decoupling surface. Afterward, the CMB photons propagate almost freely, with slight gravitational interactions with the evolving gravitational field present in the large scale structure (LSS) of the matter distribution and a low scattering rate with free electrons after the universe becomes reionized. These secondary effects slightly change the shape of the intensity and polarization angular power spectra (APS) of the radiation. The APS contain very valuable information on the parameters characterizing the background model of the universe and those parametrising the power spectra of both matter density perturbations and gravitational waves. In the last few years data from sensitive experiments have allowed a good determination of the shape of the APS, providing for the first time a model of the universe very close to spatially flat. In particular the WMAP first year data, together with other CMB data at higher resolution and other cosmological data sets, have made possible to determine the cosmological parameters with a precision of a few percent. The most striking aspect of the derived model of the universe is the unknown nature of most of its energy contents. This and other open problems in cosmology represent exciting challenges for the CMB community. The future ESA Planck mission will undoubtely shed some light on these remaining questions.
We present simulations of different scanning strategies for the Planck satellite. We review the properties of slow- and fast-precession strategies in terms of uniformity of the integration time on the sky, the presence of low-redundancy areas, the pr esence of deep fields, the presence of sharp gradients in the integration time, and the redundancy of the scanning directions. We also compare the results obtained when co-adding all detectors of a given frequency channel. The slow-precession strategies allow a good uniformity of the coverage, while providing two deep fields. On the other hand, they do not allow a wide spread of the scan-crossing directions, which is a feature of the fast-precession strategies. However, the latter suffer from many sharp gradients and low-coverage areas on the sky. On the basis of these results, the strategy for Planck can be selected to be a slow (e.g. 4 month-period) sinusoidal or cycloidal scanning.
We review the theory of the temperature anisotropy and polarization of the cosmic microwave background (CMB) radiation, and describe what we have learned from current CMB observations. In particular, we discuss how the CMB is being used to provide pr ecise measurements of the composition and geometry of the observable universe, and to constrain the physics of the early universe. We also briefly review the physics of the small-scale CMB fluctuations generated during and after the epoch of reionization, and which are the target of a new breed of arcminute-resolution instruments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا