ﻻ يوجد ملخص باللغة العربية
We propose a special cavity design that is constructed by terminating a one-dimensional waveguide with a perfect mirror at one end and doping a two-level atom at the other. We show that this atom plays the intrinsic role of a semi-transparent mirror for single photon transports such that quasi-normal modes (QNMs) emerge spontaneously in the cavity system. This atomic mirror has its reflection coefficient tunable through its level spacing and its coupling to the cavity field, for which the cavity system can be regarded as a two-end resonator with a continuously tunable leakage. The overall investigation predicts the existence of quasi-bound states in the waveguide continuum. Solid state implementations based on a dc-SQUID circuit and a defected line resonator embedded in a photonic crystal are illustrated to show the experimental accessibility of the generic model.
We observe the unconventional photon blockade effect in quantum dot cavity QED, which, in contrast to conventional photon blockade, operates in the weak coupling regime. A single quantum dot transition is simultaneously coupled to two orthogonally po
We constructed a cavity QED system with a diamagnetic atom of 171Yb and performed projective measurements on a single nuclear spin. Since Yb has no electronic spin and has 1/2 nuclear spin, the procedure of spin polarization and state verification ca
Cavity quantum electrodynamics (cavity QED) describes the coherent interaction between matter and an electromagnetic field confined within a resonator structure, and is providing a useful platform for developing concepts in quantum information proces
Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-
We present a semiconductor master equation technique to study the input/output characteristics of coherent photon transport in a semiconductor waveguide-cavity system containing a single quantum dot. We use this approach to investigate the effects of