ترغب بنشر مسار تعليمي؟ اضغط هنا

Baroclinic Generation of Potential Vorticity in an Embedded Planet-Disk System

57   0   0.0 ( 0 )
 نشر من قبل Jianghui Ji
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a multi-dimensional hydrodynamics code to study the gravitational interaction between an embedded planet and a protoplanetary disk with emphasis on the generation of vortensity (Potential Vorticity or PV) through a Baroclinic Instability. We show that the generation of PV is very common and effective in non-barotropic disks through the Baroclinic Instability, especially within the coorbital region. Our results also complement previous work that non-axisymmetric Rossby-Wave Instabilities (RWIs, Lovelace et al. 1999) are likely to develop at local minima of PV distribution that are generated by the interaction between a planet and an inviscid barotropic disk. The development of RWIs results in non-axisymmetric density blobs, which exert stronger torques onto the planet when they move to the vicinity of the planet. Hence, large amplitude oscillations are introduced to the time behavior of the total torque acted on the planet by the disk. In current simulations, RWIs do not change the overall picture of inward orbital migration but cause a non-monotonic behavior to the migration speed. As a side effect, RWIs also introduce interesting structures into the disk. These structures may help the formation of Earth-like planets in the Habitable Zone or Hot Earths interior to a close-in giant planet.

قيم البحث

اقرأ أيضاً

41 - H. Li 2005
We present two-dimensional inviscid hydrodynamic simulations of a protoplanetary disk with an embedded planet, emphasizing the evolution of potential vorticity (the ratio of vorticity to density) and its dependence on numerical resolutions. By analyz ing the structure of spiral shocks made by the planet, we show that progressive changes of the potential vorticity caused by spiral shocks ultimately lead to the excitation of a secondary instability. We also demonstrate that very high numerical resolution is required to both follow the potential vorticity changes and identify the location where the secondary instability is first excited. Low-resolution results are shown to give the wrong location. We establish the robustness of a secondary instability and its impact on the torque onto the planet. After the saturation of the instability, the disk shows large-scale non-axisymmetry, causing the torque on the planet to oscillate with large amplitude. The impact of the oscillating torque on the protoplanets migration remains to be investigated.
302 - Bennett Link 2009
I study the dynamics of a superfluid vortex in a random potential, as in the inner crust of a neutron star. Below a critical flow velocity of the ambient superfluid, a vortex is effectively immobilized by lattice forces even in the limit of zero diss ipation. Low-velocity, translatory motion is not dynamically possible, a result with important implications for understanding neutron star precession and the dynamical properties of superfluid nuclear matter.
Recently F. Huang [Commun. Theor. Phys. V.42 (2004) 903] and X. Tang and P.K. Shukla [Commun. Theor. Phys. V.49 (2008) 229] investigated symmetry properties of the barotropic potential vorticity equation without forcing and dissipation on the beta-pl ane. This equation is governed by two dimensionless parameters, $F$ and $beta$, representing the ratio of the characteristic length scale to the Rossby radius of deformation and the variation of earth angular rotation, respectively. In the present paper it is shown that in the case $F e 0$ there exists a well-defined point transformation to set $beta = 0$. The classification of one- and two-dimensional Lie subalgebras of the Lie symmetry algebra of the potential vorticity equation is given for the parameter combination $F e 0$ and $beta = 0$. Based upon this classification, distinct classes of group-invariant solutions is obtained and extended to the case $beta e 0$.
We perform collisionless N-body simulations to investigate the evolution of the structural and kinematical properties of simulated thick disks induced by the growth of an embedded thin disk. The thick disks used in the present study originate from co smologically-common 5:1 encounters between initially-thin primary disk galaxies and infalling satellites. The growing thin disks are modeled as static gravitational potentials and we explore a variety of growing-disk parameters that are likely to influence the response of thick disks. We find that the final thick-disk properties depend strongly on the total mass and radial scale-length of the growing thin disk, and much less sensitively on its growth timescale and vertical scale-height as well as the initial sense of thick-disk rotation. Overall, the growth of an embedded thin disk can cause a substantial contraction in both the radial and vertical direction, resulting in a significant decrease in the scale-lengths and scale-heights of thick disks. Kinematically, a growing thin disk can induce a notable increase in the mean rotation and velocity dispersions of thick-disk stars. We conclude that the reformation of a thin disk via gas accretion may play a significant role in setting the structure and kinematics of thick disks, and thus it is an important ingredient in models of thick-disk formation.
We present the results of our recent study on the interactions between a giant planet and a self-gravitating gas disk. We investigate how the disks self-gravity affects the gap formation process and the migration of the giant planet. Two series of 1- D and 2-D hydrodynamic simulations are performed. We select several surface densities and focus on the gravitationally stable region. To obtain more reliable gravity torques exerted on the planet, a refined treatment of disks gravity is adopted in the vicinity of the planet. Our results indicate that the net effect of the disks self-gravity on the gap formation process depends on the surface density of the disk. We notice that there are two critical values, Sigma_I and Sigma_II. When the surface density of the disk is lower than the first one, Sigma_0 < Sigma_I, the effect of self-gravity suppresses the formation of a gap. When Sigma_0 > Sigma_I, the self-gravity of the gas tends to benefit the gap formation process and enlarge the width/depth of the gap. According to our 1-D and 2-D simulations, we estimate the first critical surface density Sigma_I approx 0.8MMSN. This effect increases until the surface density reaches the second critical value Sigma_II. When Sigma_0 > Sigma_II, the gravitational turbulence in the disk becomes dominant and the gap formation process is suppressed again. Our 2-D simulations show that this critical surface density is around 3.5MMSN. We also study the associated orbital evolution of a giant planet. Under the effect of the disks self-gravity, the migration rate of the giant planet increases when the disk is dominated by gravitational turbulence. We show that the migration timescale associates with the effective viscosity and can be up to 10^4 yr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا