ترغب بنشر مسار تعليمي؟ اضغط هنا

A comprehensive comparison of the Sun to other stars: searching for self-selection effects

46   0   0.0 ( 0 )
 نشر من قبل Jose Robles A
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

If the origin of life and the evolution of observers on a planet is favoured by atypical properties of a planets host star, we would expect our Sun to be atypical with respect to such properties. The Sun has been described by previous studies as both typical and atypical. In an effort to reduce this ambiguity and quantify how typical the Sun is, we identify eleven maximally-independent properties that have plausible correlations with habitability, and that have been observed by, or can be derived from, sufficiently large, currently available and representative stellar surveys. By comparing solar values for the eleven properties, to the resultant stellar distributions, we make the most comprehensive comparison of the Sun to other stars. The two most atypical properties of the Sun are its mass and orbit. The Sun is more massive than 95 -/+ 2% of nearby stars and its orbit around the Galaxy is less eccentric than 93 +/- 1% of FGK stars within 40 parsecs. Despite these apparently atypical properties, a chi^2 -analysis of the Suns values for eleven properties, taken together, yields a solar chi^2 = 8.39 +/- 0.96. If a star is chosen at random, the probability that it will have a lower value (be more typical) than the Sun, with respect to the eleven properties analysed here, is only 29 +/- 11%. These values quantify, and are consistent with, the idea that the Sun is a typical star. If we have sampled all reasonable properties associated with habitability, our result suggests that there are no special requirements for a star to host a planet with life.

قيم البحث

اقرأ أيضاً

We review, compare and extend recent studies searching for evidence for a preferred cosmological axis. We start from the Union2 SnIa dataset and use the hemisphere comparison method to search for a preferred axis in the data. We find that the hemisph ere of maximum accelerating expansion rate is in the direction $(l,b)=({309^circ}^{+23^circ}_{-3^circ}, {18^circ}^{+11^circ}_{-10^circ})$ ($omm=0.19$) while the hemisphere of minimum acceleration is in the opposite direction $(l,b)=({129^circ}^{+23^circ}_{-3^circ},{-18^circ}^{+10^circ}_{-11^circ})$ ($omm=0.30$). The level of anisotropy is described by the normalized difference of the best fit values of $omm$ between the two hemispheres in the context of lcdm fits. We find a maximum anisotropy level in the Union2 data of $frac{Delta ommax}{bomm}=0.43pm 0.06$. Such a level does not necessarily correspond to statistically significant anisotropy because it is reproduced by about $30%$ of simulated isotropic data mimicking the best fit Union2 dataset. However, when combined with the axes directions of other cosmological observations (bulk velocity flow axis, three axes of CMB low multipole moments and quasar optical polarization alignment axis), the statistical evidence for a cosmological anisotropy increases dramatically. We estimate the probability that the above independent six axes directions would be so close in the sky to be less than $1%$. Thus either the relative coincidence of these six axes is a very large statistical fluctuation or there is an underlying physical or systematic reason that leads to their correlation.
Reinhold et al. (Science, 1 May 2020, p. 518) provided two possible interpretations of measurements showing that the Sun is less active than other solar-like stars. We argue that one of those interpretations anticipates the observed differences betwe en the properties of their two stellar samples. This suggests that solar-like stars become permanently less variable beyond a specific evolutionary phase.
The Stellar Imager mission concept is a space-based UV/Optical interferometer designed to resolve surface magnetic activity and subsurface structure and flows of a population of Sun-like stars, in order to accelerate the development and validation of a predictive dynamo model for the Sun and enable accurate long-term forecasting of solar/stellar magnetic activity.
Over the last decades, most approaches proposed for handwritten digit string recognition (HDSR) have resorted to digit segmentation, which is dominated by heuristics, thereby imposing substantial constraints on the final performance. Few of them have been based on segmentation-free strategies where each pixel column has a potential cut location. Recently, segmentation-free strategies has added another perspective to the problem, leading to promising results. However, these strategies still show some limitations when dealing with a large number of touching digits. To bridge the resulting gap, in this paper, we hypothesize that a string of digits can be approached as a sequence of objects. We thus evaluate different end-to-end approaches to solve the HDSR problem, particularly in two verticals: those based on object-detection (e.g., Yolo and RetinaNet) and those based on sequence-to-sequence representation (CRNN). The main contribution of this work lies in its provision of a comprehensive comparison with a critical analysis of the above mentioned strategies on five benchmarks commonly used to assess HDSR, including the challenging Touching Pair dataset, NIST SD19, and two real-world datasets (CAR and CVL) proposed for the ICFHR 2014 competition on HDSR. Our results show that the Yolo model compares favorably against segmentation-free models with the advantage of having a shorter pipeline that minimizes the presence of heuristics-based models. It achieved a 97%, 96%, and 84% recognition rate on the NIST-SD19, CAR, and CVL datasets, respectively.
Among the 21 Herbig Ae/Be stars studied, new detections of a magnetic field were achieved in six stars. For three Herbig Ae/Be stars, we confirm previous magnetic field detections. The largest longitudinal magnetic field, <B_z> = -454+-42G, was detec ted in the Herbig Ae/Be star HD101412 using hydrogen lines. No field detection at a significance level of 3sigma was achieved in stars with debris disks. Our study does not indicate any correlation of the strength of the longitudinal magnetic field with disk orientation, disk geometry, or the presence of a companion. We also do not see any simple dependence on the mass-accretion rate. However, it is likely that the range of observed field values qualitatively supports the expectations from magnetospheric accretion models giving support for dipole-like field geometries. Both the magnetic field strength and the X-ray emission show hints for a decline with age in the range of ~2-14Myrs probed by our sample supporting a dynamo mechanism that decays with age. However, our study of rotation does not show any obvious trend of the strength of the longitudinal magnetic field with rotation period. Furthermore, the stars seem to obey the universal power-law relation between magnetic flux and X-ray luminosity established for the Sun and main-sequence active dwarf stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا