ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective processes of an ensemble of spin-1/2 particles

160   0   0.0 ( 0 )
 نشر من قبل Bradley Chase
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When the dynamics of a spin ensemble are expressible solely in terms of symmetric processes and collective spin operators, the symmetric collective states of the ensemble are preserved. These many-body states, which are invariant under particle relabeling, can be efficiently simulated since they span a subspace whose dimension is linear in the number of spins. However, many open system dynamics break this symmetry, most notably when ensemble members undergo identical, but local, decoherence. In this paper, we extend the definition of symmetric collective states of an ensemble of spin-1/2 particles in order to efficiently describe these more general collective processes. The corresponding collective states span a subspace which grows quadratically with the number of spins. We also derive explicit formulae for expressing arbitrary identical, local decoherence in terms of these states.



قيم البحث

اقرأ أيضاً

We study the excitation dynamics of an inhomogeneously broadened spin ensemble coupled to a single cavity mode. The collective excitations of the spin ensemble can be described in terms of generalized spin waves and, in the absence of the cavity, the free evolution of the spin ensemble can be described as a drift in the wave number without dispersion. In this article we show that the dynamics in the presence of coupling to the cavity mode can be described solely by a modified time evolution of the wave numbers. In particular, we show that collective excitations with a well- defined wave number pass without dispersion from negative to positive valued wave numbers without populating the zero wave number spin wave mode. The results are relevant for multi-mode collective quantum memories where qubits are encoded in different spin waves.
We experimentally and theoretically investigate collective radiative effects in an ensemble of cold atoms coupled to a single-mode optical nanofiber. Our analysis unveils the microscopic dynamics of the system, showing that collective interactions be tween the atoms and a single guided photon gradually build-up along the atomic array in the direction of propagation of light. These results are supported by time-resolved measurements of the light transmitted and reflected by the ensemble after excitation via nanofiber-guided laser pulses, whose rise and fall times are shorter than the atomic lifetime. Superradiant decays more than one order of magnitude faster than the single-atom free-space decay rate are observed for emission in the forward-propagating guided mode, while at the same time no speed-up of the decay rate are measured in the backward direction. In addition, position-resolved measurements of the light that is transmitted past the atoms are performed by inserting the nanofiber-coupled atomic array in a 45-m long fiber ring-resonator, which allow us to experimentally reveal the progressive growth of the collective response of the atomic ensemble. Our results highlight the unique opportunities offered by nanophotonic cold atom systems for the experimental investigation of collective light-matter interaction.
It has become common practice to model large spin ensembles as an effective pseudospin with total angular momentum J = N x j, where j is the spin per particle. Such approaches (at least implicitly) restrict the quantum state of the ensemble to the so -called symmetric Hilbert space. Here, we argue that symmetric states are not generally well-preserved under the type of decoherence typical of experiments involving large clouds of atoms or ions. In particular, symmetric states are rapidly degraded under models of decoherence that act identically but locally on the different members of the ensemble. Using an approach [Phys. Rev. A 78, 052101 (2008)] that is not limited to the symmetric Hilbert space, we explore potential pitfalls in the design and interpretation of experiments on spin-squeezing and collective atomic phenomena when the properties of the symmetric states are extended to systems where they do not apply.
In this article, we study the Sagnac effect for spin-$1/2$ particles through local Wigner rotations according to the framework developed by [H. Terashima and M. Ueda, Phys. Rev. A 69, 032113 (2004)]. Since the spin of the particle plays the role of a quantum `clock, as the quanton moves in a superposed path it gets entangled with the momentum (or the path), and this will cause the interferometric visibility to drop, since there is a difference in proper time elapsed along the two trajectories, which is known as the Sagnac time delay.
151 - Wojciech Florkowski 2020
The formulation of relativistic hydrodynamics for massive particles with spin 1/2 is shortly reviewed. The proposed framework is based on the Wigner function treated in a semi-classical approximation or, alternatively, on a classical treatment of spi n 1/2. Several theoretical issues regarding the choice of the energy-momentum and spin tensors used to construct the hydrodynamic framework with spin are discussed in parallel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا